## Watching Systems in Graphs: an Extension of Identifying Codes

David Auger\* Irène Charon\*\* Olivier Hudry\*\* Antoine Lobstein\*\*\*

\* PRiSM, Université de Versailles Saint-Quentin-en-Yvelines

\*\* Institut TELECOM - TELECOM ParisTech & Centre National de la Recherche Scientifique - LTCI UMR 5141

\*\*\* Centre National de la Recherche Scientifique - LTCI UMR 5141 & Institut TELECOM - TELECOM ParisTech

**Key Words:** Graph theory, Complexity, Identifying codes, Watching systems, Paths, Cycles

- **1.** Introduction and definitions
- **2.** First properties of watching systems
- **3.** An upper bound for the watching number
- 4. Complexity: NP-completeness
- 5. Watching systems in paths and cycles
- 6. Watching sets of vertices

**6.1**  $(1, \leq 2)$ -watching systems in paths and cycles

**6.2**  $(1, \leq \ell)$ -watching systems in paths and cycles for  $\ell \geq 3$ 

(7. Watching systems in the king grid = next talk, by David Auger)

[1] AUGER, CHARON, HUDRY, LOBSTEIN:
Maximum size of a minimum watching system and the graphs achieving the bound,
Rapport interne Telecom ParisTech-2010D011,
Paris, France, 40 pages, March 2010.
Also: Discrete Applied Mathematics, to appear.

[2] AUGER, CHARON, HUDRY, LOBSTEIN: Watching systems in graphs: an extension of identifying codes,

Discrete Applied Mathematics, to appear. http://hal.archives-ouvertes.fr/hal-00481469

[3] http://perso.telecom-paristech.fr/~lobstein/ debutBIBidetlocdom.pdf

PLEASE SEND ME MORE REFERENCES!!

## 1. Introduction and definitions

Watching systems in the case r = 1 (easy generalization) :

instead of checking all its closed neighbourhood (= ball of radius 1), the codeword (now called *watcher*) checks a *subset* of its neighbourhood (= *watching zone* or *checking zone*). It is a **couple**  $w = (x \in V(G), Z \subseteq B_1(x))$ .

### NOTE THAT:

- watching systems always exist
- when an identifying code also exists, its size is at least that of a minimum watching system

• several watchers can be located on the same vertex (with different watching zones)

• a watching system remains so **if we add edges** 

EXAMPLE:



Star with 15 vertices, minimum identifying code of size 14

One can do with 4 watchers !



Star with 15 vertices, minimum watching system of size 4

#### 2. First properties of watching systems

Let respectively w(G),  $\gamma(G)$  and i(G) denote the minimum sizes of a watching system, of a dominating set and, when it exists, of an identifying code in  $\overline{G}$ .

These parameters will be called *watching number*, *domination number*, and *identifying number*, respectively.

**Theorem 1.** For any graph G, we have:

$$\lceil \log_2(|V(G)| + 1) \rceil \le w(G).$$

For any twin-free graph G, we have (already mentioned):

 $w(G) \le i(G).$ 

**Theorem 2.** For any graph G, we have:

 $\gamma(G) \le w(G) \le \gamma(G) \cdot \left\lceil \log_2(\Delta(G) + 2) \right\rceil,$ 

where  $\Delta(G)$  denotes the maximum degree of G.

**Proof.** If  $\mathcal{W}$  is a watching system, then the set of the watchers' locations in  $\mathcal{W}$  is a dominating set, so we have the left-hand inequality. On the other hand, if we have a dominating set  $\Gamma \subseteq V(G)$  of size  $\gamma(G)$ , we can identify all vertices simply by locating enough watchers at every vertex of  $\Gamma$ . One just has to notice that in order to identify a vertex v and its (at most)  $\Delta(G)$  neighbours, we need at most  $p := \lceil \log_2(\Delta(G) + 2) \rceil$  watchers, since a set with p elements has at least  $\Delta(G) + 1$  nonempty subsets.

#### 3. An upper bound for the watching number

It is known that  $i(G) \leq |V(G)| - 1$  for any connected twin-free graph with at least three vertices, and that this bound is reached, for instance, by the star. We prove that a much smaller number of watchers is needed, namely 2n/3; we will use the following three lemmata.



**Lemma 3. (already mentioned)** Let G be a graph and H be a partial graph of G, i.e., with V(H) =V(G) and  $E(H) \subseteq E(G)$ . Then

 $w(H) \ge w(G).$ 

Note that this monotony property does **not** hold in general for identifying codes.

**Lemma 4.** Let T be a tree, x be a leaf of T, and y be the neighbour of x.

(a) There exists a minimum watching system for T with one watcher located at y.

(b) If y has degree 2, there exists a minimum watching system for T with one watcher located at z, the second neighbour of y.



**Lemma 5.** Let T be a tree with four vertices, and let v be a vertex of T; there exists a set W of two watchers such that

- the vertices in  $V(T) \setminus \{v\}$  are checked and pairwise separated by  $\mathcal{W}$  — in this case, we shall say, with a slight abuse of notation, that  $\mathcal{W}$  is a watching system of  $V(T) \setminus \{v\}$ ;
- the vertex v is checked by at least one watcher.

**Theorem 6.** If G is a connected graph of order n:

$$- If n = 1, w(G) = 1.$$
  

$$- If n = 2 \text{ or } n = 3, w(G) = 2.$$
  

$$- If n = 4 \text{ or } n = 5, w(G) = 3.$$
  

$$- If n \notin \{1, 2, 4\}, w(G) \le \frac{2n}{3}.$$

**Proof.** Small cases (up to 5) are easy.

#### We proceed **by induction** on n.

We assume that  $n \ge 6$  and that the theorem is true for any connected graph of order less than n.

Let G be a connected graph of order n. Let T be a <u>spanning tree</u> of G; we will prove that  $w(T) \leq \frac{2n}{3}$  and then the theorem will result from Lemma 3. We denote by D the <u>diameter</u> of T and we consider a path  $v_0, v_1, v_2, \ldots, v_{D-1}, v_D$  of T, with length D.

We distinguish between four cases, according to some conditions on the degrees of  $v_{D-1}$  and  $v_{D-2}$ .



• First case: the degree of  $v_{D-1}$  is equal to 3

The vertex  $v_{D-1}$  is adjacent to a vertex x other than  $v_{D-2}$  and  $v_D$ ; because D is the diameter, clearly x and  $v_D$  are leaves of T (see **Figure**). We consider the tree obtained by removing x,  $v_{D-1}$ and  $v_D$  from T; this new tree T' has order n-3.

If  $n \geq 8$  or if n = 6, we consider a minimum watching system  $\mathcal{W}$  for T'; if n = 7, then T' is of order 4, and, using Lemma 5, we choose a set  $\mathcal{W}$  of two watchers which is a watching system for  $V(T') \setminus \{v_{D-2}\}$  and checks the vertex  $v_{D-2}$ .

Then for T, in both cases, we add to  $\mathcal{W}$  two watchers  $w_1 = (v_{D-1}, \{v_{D-2}, v_{D-1}, v_D\})$  and  $w_2 = (v_{D-1}, \{v_{D-1}, x\})$ . On the **Figure**, we rename 1 and 2 these watchers. Then  $\mathcal{W} \cup \{w_1, w_2\}$  is a watching system for T. So,  $w(T) \leq |\mathcal{W}| + 2 \leq w(T') + 2$ .

Now we use the induction hypothesis: if  $n \ge 8$  or n = 6, then  $w(T) \le \frac{2}{3}(n-3) + 2 = \frac{2n}{3}$ ; and if n = 7, then  $w(T) \le 2 + 2 = 4 < \frac{2}{3} \times 7$ .



five gadgets of order 5





Tree T with 15 vertices and w(T) = 10

**Theorem 7.** Let T be a tree of order n = 3k for  $k \ge 1$ .

We have:

 $w(T) = 2k \Leftrightarrow T$  can be obtained by choosing k gadgets of order 3 and joining these gadgets by their binding vertices to obtain a tree.



Trees T with 17 vertices and w(T) = 11

**Theorem 8.** Let T be a tree of order n = 3k + 2 for  $k \ge 1$ .

We have:

 $w(T) = 2k + 1 \Leftrightarrow T$  can be obtained by choosing one gadget of order 2 and k gadgets of order 3, or one gadget of order 5 and k - 1 gadgets of order 3, and joining these gadgets by their binding vertices to obtain a tree. **Theorem 9.** Let T be a tree of order n = 3k + 1 for  $k \ge 2$ .

We have:

 $w(T) = 2k \Leftrightarrow T$  can be obtained by choosing

- (i) two gadgets of order 2 and k-1 gadgets of order 3,
- (ii) or one gadget of order 2, one gadget of order 5 and k-2 gadgets of order 3,
- (iii) or two gadgets of order 5 and k-3 gadgets of order 3,
- (iv) or one gadget of order 1 and k gadgets of order 3,
- (v) or one gadget of order 4 and k-1 gadgets of order 3,

and joining these gadgets by their binding vertices to obtain a tree.



two g3's, one g2 and one g5



three g3's and one g4

Trees T with 13 vertices and w(T) = 8

We can <u>almost</u> characterize the graphs for which the bound is tight: we can do it in the cases  $n = 3k, k \ge 1$ , and n = 3k + 2,  $k \ge 1$ ; the case n = 3k + 1 is more complex, and we are only able to state a conjecture for  $k \ge 6$ .

**Definition 10.** A connected graph G is said to be maximal if, when we add any edge to G, we obtain a graph G' verifying: w(G') < w(G).

We denote by  $\omega(n)$  the maximum minimum number of watchers needed in a connected graph of order n, i.e.,

 $\omega(n) = \max\{w(G) : G \text{ connected of order } n\}.$ 

We have just established that

$$\omega(n) = \lfloor \frac{2n}{3} \rfloor \text{ for } n \notin \{1, 2, 4\},$$

and we have characterized the trees of order n reaching  $\omega(n)$ .

Now, we want to describe all the <u>maximal</u> connected graphs of order n which reach  $\omega(n)$ .

Using Lemma 3, the graphs of order n which reach  $\omega(n)$  are <u>exactly</u> the connected partial graphs of the maximal connected graphs of order n reaching  $\omega(n)$ .



The unique maximal graph of order 15 reaching the bound  $\omega(15) = 10$ .

**Theorem 11.** Let k be an integer,  $k \ge 1$ , and G be a maximal graph of order 3k.

We have:

 $w(G) = 2k \Leftrightarrow G$  is obtained by taking a collection of  $k K_3$ 's, choosing one vertex named a binding vertex in each  $K_3$ , and connecting these k binding vertices by  $K_k$ . The two maximal graphs of order 17 reaching the bound



The additional maximal graph of order 8 reaching the bound



**Theorem 12.** (a) Let k be an integer,  $k \ge 3$ , and G be a maximal graph of order 3k + 2. We have:

 $w(G) = 2k + 1 \Leftrightarrow G$  is obtained by taking a collection of k  $K_3$ 's and one  $K_2$ , or k - 1  $K_3$ 's and one  $K_5$ , choosing one vertex named a binding vertex in each of these complete graphs, and connecting these binding vertices by  $K_{k+1}$  if we have taken a  $K_2$ , and by  $K_k$  if we have taken a  $K_5$ .

(b) If G is a maximal graph of order 8, then we have:  $w(G) = 5 \Leftrightarrow G$  is the graph given above, or G is obtained by following the rules given in Case (a), for k = 2.

(c) The only maximal graph G of order 5 with w(G) = 3 is the clique  $K_5$ .



New gadgets (of order 7)

**Conjecture 13.** Let k be an integer,  $k \ge 6$ , and G be a maximal graph of order 3k + 1.

We have:

 $w(G) = 2k \Leftrightarrow G$  is obtained by:

- (i) taking two  $K_2$ 's and k 1  $K_3$ 's,
- (ii) or taking one  $K_2$ , one  $K_5$  and k-2  $K_3$ 's,
- (iii) or taking two  $K_5$ 's and k-3  $K_3$ 's,
- (iv) or taking one  $K_4$  and k 1  $K_3$ 's,
- (v) or taking one g7 and  $k 2 K_3$ 's,

choosing one vertex named a binding vertex on each of the complete components  $K_i$ , except on  $K_4$  for which we choose two binding vertices, taking for the g7 one or two binding vertex(ices) according to its type, and connecting these binding vertices to form a complete graph with them.



The graphs above are graphs of order 19 reaching the bound  $\omega(19) = 12$ :

- (a) with one  $K_2$ , one  $K_5$  and four  $K_3$ 's;
- (b) with one  $K_4$  and five  $K_3$ 's;
- (c) with one g7 and four  $K_3$ 's;



For n = 3k+1 with  $k \leq 5$ , there are maximal graphs needing 2k watchers which are not of the form described in the conjecture.

Above is a certified example for n = 16.

### 4. Complexity: NP-completeness

*Vertex cover* in a graph  $G: \mathcal{C}$  is a vertex cover if

$$\forall e = xy \in E(G), \ x \in \mathcal{C} \text{ or } y \in \mathcal{C}.$$

It is well known that the problem of finding the minimum cardinality of a vertex cover in a given graph is *NP*-hard, even when restricted to the class of **planar** graphs whose **maximum degree is at most** 3, class which we denote by **PL(3)**.

With some additional work, we can also get rid of the vertices with degree one, and restrict ourselves to the class **PL'(3)** of all **planar** graphs where every vertex **has degree** 2 or 3.

Then the following decision problem is *NP*-complete:

MIN VERTEX COVER IN PL'(3)

• INSTANCE: A graph  $G \in PL'(3)$  and an integer k;

• QUESTION: Is there a vertex cover for G with size at most k ?

## MIN WATCHING SYSTEM IN PL(3)

• INSTANCE: A planar graph G', with maximum degree at most 3, and an integer k';

• QUESTION: Is there a watching system for G' with size at most k'?

**Theorem 14.** MIN WATCHING SYSTEM IN PL(3) is *NP-complete*.

**Proof.** 1. MIN WATCHING SYSTEM IN  $PL(3) \in NP$ . 2. Take *G* (with *m* edges) and *k*, instance of MIN VERTEX COVER IN PL'(3). Construct *G'* by **replacing every edge** xy of *G* by the structure  $S_{xy}$  depicted below.



G' has n + 2m vertices and 3m edges: the construction is **polynomial**. Moreover, if  $G \in PL'(3)$ , then  $G' \in PL(3)$ . We set k' = k + m. The proof is complete if we prove that

G admits a vertex cover of size at most k if and only if G' admits a watching system of size at most k'.



#### Assume first that C is a vertex cover of G.

We define a watching system  $\mathcal{W}$  in G' as follows:

- for every vertex x of V(G) such that  $x \in \mathcal{C}$ , we add the watcher  $(x, N_{G'}[x])$  to  $\mathcal{W}$ ;
- for every edge e = xy of G, we add the watcher  $(a_{xy}, N_{G'}[a_{xy}])$  to  $\mathcal{W}$ .

It is easy to see that  $\mathcal{W}$  is a watching system in G'. Consider a vertex x in G; since it has degree at least 2 in G, it is adjacent to at least two vertices  $y_1$  and  $y_2$  in G. So the corresponding vertex x in G' is checked by, at least, the two watchers located at  $a_{xy_1}$  and  $a_{xy_2}$ , belonging respectively to the structures  $S_{xy_1}$  and  $S_{xy_2}$ , and thus x is identified by  $\mathcal{W}$ . Also note that for every edge e = xy of G, since either x or y belong to the vertex cover  $\mathcal{C}$ , there is a watcher in  $\mathcal{W}$  that separates  $a_{xy}$  from  $b_{xy}$ .

Thus G' admits a watching system with size  $|\mathcal{C}| + m \leq k'$ .



Let  $V'_{xy} = \{a_{xy}, b_{xy}\}.$ 

## Conversely, assume that $\mathcal{W}$ is a watching system of G' of size at most k'.

Consider an edge  $xy \in E(G)$  and the watchers located in the structure  $S_{xy}$  of G'. Then:

- if no watcher is located at x nor y, there must be at least two watchers located in  $V'_{xy}$ ;
- if at least one watcher is located at x or y, we still need at least one watcher in  $V'_{xy}$ .

So if we denote by  $\mathcal{C}$  the set of vertices  $x \in V(G)$  such that  $\mathcal{W}$  contains a watcher located at x, and by p the number of edges xy of G with  $x \notin \mathcal{C}$  and  $y \notin \mathcal{C}$ , we have

$$|\mathcal{C}| \le |\mathcal{W}| - 2p - (m-p) \le k' - m - p \le k - p.$$

Therefore if we add to  $\mathcal{C}$  one vertex for every uncovered edge of G, we get a vertex cover of G of size at most k.

#### 5. Watching systems in paths and cycles

**Theorem 15.** For all  $n \ge 1$ , we have:

$$w(P_n) = \left\lceil \frac{n+1}{2} \right\rceil$$

Constructions proving that  $\lceil \frac{n+1}{2} \rceil$  is an upper bound are easy to find; actually it is sufficient to use identifying codes: on paths, watching systems are **no better** than identifying codes, except for n = 2, when no identifying code exists.

**Theorem 16.** We have  $w(C_4) = 3$ , and for n = 3and all  $n \ge 5$ :

$$w(C_n) = \left\lceil \frac{n}{2} \right\rceil.$$

For identifying codes, we know that:

the cycle of length three admits no identifying code,  $i(C_4) = i(C_5) = 3,$   $i(C_n) = \frac{n}{2}$  when n is even,  $n \ge 6,$  $i(C_n) = \frac{n+3}{2}$  when n is odd,  $n \ge 7.$ 

So  $i(C_n) = w(C_n)$  when n = 5 or n is even,  $n \ge 4$ , and  $i(C_n) = w(C_n) + 1$  when n is odd,  $n \ge 7$ .

**Conclusion:** Watching systems do not bring much !

## 6. Watching sets of vertices

Generalization to  $r \ge 1$  and  $\ell \ge 1$ : ( $r, \le \ell$ )-watching systems

Let  $\mathcal{W}$  be a set of *r*-watchers in *G*. If  $A \subset V(G)$ , we define the  $\mathcal{W}$ -label of *A* as

$$L_{\mathcal{W}}(A) = \bigcup_{v \in A} \{ \text{watchers checking } v \}.$$

 $(r, \leq \ell)$ -watching system: all the labels of the subsets A of V(G) with  $1 \leq |A| \leq \ell$  are  $\neq \emptyset$  and distinct.

A  $(r, \leq \ell)$ -watching system is a  $(r', \leq \ell')$ -watching system if  $\ell' \leq \ell$  and  $r' \geq r$ .

#### $\ell$ -superimposed family:

 $S = \{S_1, S_2, \ldots, S_k\}$  finite family of distinct nonempty subsets of a set X, integer  $\ell \ge 1$ .

S is a  $\ell$ -superimposed family on X if, whenever we consider two distinct sets I, J included in  $\{1, \ldots, k\}$  with  $1 \leq |I| \leq \ell$  and  $1 \leq |J| \leq \ell$ , we have:

$$\bigcup_{i\in I} S_i \neq \bigcup_{j\in J} S_j.$$

If  $\mathcal{W}$  is a  $(r, \leq \ell)$ -watching system in a graph G, then the family of all  $\mathcal{W}$ -labels of the vertices of Gis a  $\ell$ -superimposed family on  $\mathcal{W}$ .

The family of singletons of X is always a  $\ell$ -superimposed family of X for all  $\ell \geq 1$ , and so every graph G admits a  $(r, \leq \ell)$ -watching system for all  $r \geq 1$  and  $\ell \geq 1$ , consisting of every vertex  $v \in V(G)$  checking itself.

Observe that if  $\ell \geq 2$  and  $i \neq j$ , then  $S_i \subseteq S_j$ is impossible in a  $\ell$ -superimposed family.

From this follows that if  $|L_{\mathcal{W}}(x)| = 1$  for a vertex xin the graph with watching system  $\mathcal{W}$ , then if  $\ell \geq 2$ the watcher checking x must check <u>only</u> x: we will call such a watcher a *hermit*.

Wlog, we can suppose that this watcher is located at x.

# **6.1** $(1, \leq 2)$ -watching systems in paths and cycles

**Lemma 17.** For  $1 \le k \le 4$ , the only 2-superimposed family on a set with k elements with at least k subsets is the family of k singletons.

In other words, with k watchers,  $1 \le k \le 4$ , we can produce k valid labels, which will be singletons, and not more.

**Theorem 18.** For all  $n \ge 1$ , the minimum size of a  $(1, \le 2)$ -watching system in the path  $P_n$  is equal to

$$\begin{cases} n & \text{if } n \le 10, \\ \left\lceil \frac{5(n+1)}{6} \right\rceil & \text{if } n > 10. \end{cases}$$

**Proof.** The proof for the lower bound is **by induction** on n. The study of the small cases is done using Lemma 17.

We give a **construction** that matches the lower bound. For  $n \in \{1, 2, ..., 10\}$ , we need at least n watchers, and we can do it with n hermits. For n = 11, see the left part of the **Figure** below.

When n = 6k - 1,  $k \ge 3$ , for which at least 5k watchers are necessary, use the left part of the **Figure**, add the pattern of the last six vertices to the right of the right-most vertex,  $x_{11}$ , change, for these new vertices, 6, 7, 8, 9, 10 into 11, 12, 13, 14, 15, and so on: see the right part of **Figure**.

When n = 6k + i,  $k \ge 2$ ,  $i \in \{0, 1, 2, 3, 4\}$ , for which at least 5k + i + 1 watchers are necessary, we use the construction for 6k - 1 and manage with some additional work.

Observe also that no  $(1, \leq 2)$ -identifying code (and more generally, **no**  $(1, \leq \ell)$ -identifying code) exists in the path  $P_n$ , because, since  $N_{P_n}[x_1] \subseteq N_{P_n}[x_2]$ , the sets of vertices  $\{x_2\}$  and  $\{x_1, x_2\}$  cannot be separated. **Theorem 19.** For all  $n \ge 3$ , the minimum size of a  $(1, \le 2)$ -watching system in the cycle  $C_n$  is  $\lceil \frac{5}{6}n \rceil$ , except for n = 6, for which it is 6.

**Proof.** The small cases, up to n = 5, are easy to handle. The proof of the case n = 6 is the most cumbersome. The lower bound in the general case makes use of the proof for the paths.

**Constructions** meeting the lower bound are easy: take a path with n-1 vertices together with the construction of an optimal  $(1, \leq 2)$ -watching system described in the proof of Theorem 18.

Add a vertex  $x_n$  which is linked to  $x_1$  and  $x_{n-1}$ , and assign to  $x_n$ the label  $\{w_1, w_2\}$ , where  $w_1$  is located at  $x_1$  and  $w_2$  is located at  $x_{n-1}$  (in our construction, there are always watchers located at each end of the path). You obtain a  $(1, \leq 2)$ -watching system for  $C_n$ , of size  $\lceil \frac{5n}{6} \rceil$ , for  $n \geq 7$ .

The reason why this construction does not work for n = 6 is that there would be three labels,  $\{1,3\}$ ,  $\{3,5\}$  and  $\{1,5\}$ , whose pairwise unions are equal to  $\{1,3,5\}$ .

If we compare to  $(1, \leq 2)$ -identifying codes in  $C_n$ , we can see that, because  $B_{C_n}(x_i, 1)$  and  $B_{C_n}(x_i, 1) \cup B_{C_n}(x_{i+1}, 1)$  differ by only one vertex,  $x_{i+2}$ , this vertex, hence by symmetry all vertices, must belong to the code. Starting from n = 7, the **only**  $(1, \leq 2)$ identifying code in the cycle  $C_n$  is  $V(C_n)$ .

# **6.2** $(1, \leq \ell)$ -watching systems in paths and cycles for $\ell \geq 3$

Like every graph, the path  $P_n$  and the cycle  $C_n$  admit a  $(1, \leq \ell)$ -watching system, which is the trivial watching system, made of all the hermits. For  $P_n$  and  $C_n$ , this is the best we can do:

**Theorem 20.** For all  $n \ge 1$  (resp.,  $n \ge 3$ ) and  $\ell \ge 3$ , the minimum size of a  $(1, \le \ell)$ -watching system in the path  $P_n$  (resp., the cycle  $C_n$ ) is n.

Finally, observe that for  $\ell \geq 3$ , no  $(1, \leq \ell)$ -identifying code exists in the cycle  $C_n$ , because the sets of vertices  $\{1, 3\}$  and  $\{1, 2, 3\}$  (or more generally,  $\{x, x + 2\}$  and  $\{x, x + 1, x + 2\}$ ) cannot be separated.

|       |                | $(1, \le 2)$                                                                                                        | $(1, \leq \ell), \ell \geq 3$ |
|-------|----------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|
| path  | id. code       | does not exist                                                                                                      | does not exist                |
|       | watching syst. | $\begin{cases} n & \text{if } n \le 10\\ \left\lceil \frac{5(n+1)}{6} \right\rceil & \text{if } n > 10 \end{cases}$ | n                             |
| cycle | id. code       | n                                                                                                                   | does not exist                |
|       | watching syst. | $\left\lceil \frac{5n}{6} \right\rceil$ if $n \neq 6$                                                               | n                             |

Conclusion: Here, watching systems are efficient.