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∗ PRiSM, Université de Versailles Saint-Quentin-en-Yvelines

∗∗ Institut TELECOM - TELECOM ParisTech

& Centre National de la Recherche Scientifique - LTCI UMR 5141

∗∗∗ Centre National de la Recherche Scientifique - LTCI UMR 5141

& Institut TELECOM - TELECOM ParisTech

Key Words: Graph theory, Complexity,

Identifying codes, Watching systems, Paths, Cycles

1



1. Introduction and definitions

2. First properties of watching systems

3. An upper bound for the watching number

4. Complexity: NP-completeness

5. Watching systems in paths and cycles

6. Watching sets of vertices

6.1 (1,≤ 2)-watching systems in paths and cycles

6.2 (1,≤ `)-watching systems in paths and cycles

for ` ≥ 3

(7. Watching systems in the king grid = next talk,

by David Auger)

2



[1] AUGER, CHARON, HUDRY, LOBSTEIN:

Maximum size of a minimum watching system

and the graphs achieving the bound,

Rapport interne Telecom ParisTech-2010D011,

Paris, France, 40 pages, March 2010.

Also: Discrete Applied Mathematics, to appear.

[2] AUGER, CHARON, HUDRY, LOBSTEIN:

Watching systems in graphs: an extension of

identifying codes,

Discrete Applied Mathematics, to appear.

http://hal.archives-ouvertes.fr/hal-00481469

[3] http://perso.telecom-paristech.fr/˜lobstein/

debutBIBidetlocdom.pdf

PLEASE SEND ME MORE REFERENCES!!

3



1. Introduction and definitions

Watching systems in the case r = 1 (easy generalization) :

instead of checking all its closed neighbourhood (= ball of ra-

dius 1), the codeword (now called watcher) checks a subset of

its neighbourhood (= watching zone or checking zone).

It is a couple w = (x ∈ V (G), Z ⊆ B1(x)).

NOTE THAT:

• watching systems always exist

• when an identifying code also exists, its size is at least

that of a minimum watching system

• several watchers can be located on the same vertex
(with different watching zones)

• a watching system remains so if we add edges

EXAMPLE:
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Star with 15 vertices, minimum identifying code of size 14

4



One can do with 4 watchers !
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Star with 15 vertices, minimum watching system of size 4

2. First properties of watching systems

Let respectively w(G), γ(G) and i(G) denote the minimum sizes

of a watching system, of a dominating set and, when it exists,

of an identifying code in G.

These parameters will be called watching number,

domination number, and identifying number, respectively.

Theorem 1. For any graph G, we have:

dlog2(|V (G)| + 1)e ≤ w(G).

For any twin-free graph G, we have (already mentioned):

w(G) ≤ i(G).
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Theorem 2. For any graph G, we have:

γ(G) ≤ w(G) ≤ γ(G) · dlog2(∆(G) + 2)e ,

where ∆(G) denotes the maximum degree of G.

Proof. If W is a watching system, then the set of the

watchers’ locations in W is a dominating set, so we

have the left-hand inequality. On the other hand, if we

have a dominating set Γ ⊆ V (G) of size γ(G), we can

identify all vertices simply by locating enough watch-

ers at every vertex of Γ. One just has to notice that

in order to identify a vertex v and its (at most) ∆(G)

neighbours, we need at most p := dlog2(∆(G) + 2)e

watchers, since a set with p elements has at least

∆(G) + 1 nonempty subsets. �

3. An upper bound for the watching number

It is known that i(G) ≤ |V (G)| − 1 for any connected twin-free

graph with at least three vertices , and that this bound is reached,

for instance, by the star. We prove that a much smaller number

of watchers is needed, namely 2n/3; we will use the following

three lemmata.
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Lemma 3. (already mentioned) Let G be a graph

and H be a partial graph of G, i.e., with V (H) =

V (G) and E(H) ⊆ E(G). Then

w(H) ≥ w(G).

Note that this monotony property does not hold

in general for identifying codes.

Lemma 4. Let T be a tree, x be a leaf of T , and

y be the neighbour of x.

(a) There exists a minimum watching system for T

with one watcher located at y.

(b) If y has degree 2, there exists a minimum

watching system for T with one watcher located

at z, the second neighbour of y.
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Lemma 5. Let T be a tree with four vertices, and

let v be a vertex of T ; there exists a set W of two
watchers such that

− the vertices in V (T )\{v} are checked and pair-

wise separated by W — in this case, we shall

say, with a slight abuse of notation, that W is

a watching system of V (T ) \ {v};

− the vertex v is checked by at least one watcher.
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Theorem 6. If G is a connected graph of order n:

− If n = 1, w(G) = 1.

− If n = 2 or n = 3, w(G) = 2.

− If n = 4 or n = 5, w(G) = 3.

− If n /∈ {1, 2, 4}, w(G) ≤ 2n
3 .

Proof. Small cases (up to 5) are easy.

We proceed by induction on n.
We assume that n ≥ 6 and that the theorem is true

for any connected graph of order less than n.

Let G be a connected graph of order n. Let T be a

spanning tree of G; we will prove that w(T ) ≤ 2n
3 and

then the theorem will result from Lemma 3. We de-

note by D the diameter of T and we consider a path

v0, v1, v2, . . . , vD−1, vD of T , with length D.

We distinguish between four cases, according to
some conditions on the degrees of vD−1 and vD−2.
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• First case: the degree of vD−1 is equal to 3

The vertex vD−1 is adjacent to a vertex x other than vD−2 and vD;

because D is the diameter, clearly x and vD are leaves of T (see

Figure). We consider the tree obtained by removing x, vD−1

and vD from T ; this new tree T ′ has order n − 3.

If n ≥ 8 or if n = 6, we consider a minimum watching system W
for T ′; if n = 7, then T ′ is of order 4, and, using Lemma 5, we

choose a set W of two watchers which is a watching system for

V (T ′) \ {vD−2} and checks the vertex vD−2.

Then for T , in both cases, we add to W two watchers w1 =

(vD−1, {vD−2, vD−1, vD}) and w2 = (vD−1, {vD−1, x}). On the

Figure, we rename 1 and 2 these watchers. Then W∪{w1, w2}
is a watching system for T . So, w(T ) ≤ |W| + 2 ≤ w(T ′) + 2.

Now we use the induction hypothesis:

if n ≥ 8 or n = 6, then w(T ) ≤ 2
3(n − 3) + 2 = 2n

3 ;

and if n = 7, then w(T ) ≤ 2 + 2 = 4 < 2
3 × 7.
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three gadgets of order 4

type dtype b

type ctype b

five gadgets of order 5

type a type c

type a

type a type b

type e

one gadget of order 1

one gadget of order 2 two gadgets of order 3

We can characterize the trees T

with n vertices and w(T ) = b2n
3 c.
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Tree T with 15 vertices and w(T ) = 10

Theorem 7. Let T be a tree of order n = 3k for k ≥ 1.

We have:

w(T ) = 2k ⇔ T can be obtained by choosing k gadgets of

order 3 and joining these gadgets by their binding vertices to

obtain a tree.
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one g2 and five g3’s

one g5 and four g3’s

Trees T with 17 vertices and w(T ) = 11

Theorem 8. Let T be a tree of order n = 3k + 2 for k ≥ 1.

We have:

w(T ) = 2k + 1 ⇔ T can be obtained by choosing one gadget

of order 2 and k gadgets of order 3, or one gadget of order 5

and k − 1 gadgets of order 3, and joining these gadgets by

their binding vertices to obtain a tree.
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Theorem 9. Let T be a tree of order n = 3k + 1 for k ≥ 2.

We have:

w(T ) = 2k ⇔ T can be obtained by choosing

− (i) two gadgets of order 2 and k − 1 gadgets of order 3,

− (ii) or one gadget of order 2, one gadget of order 5 and

k − 2 gadgets of order 3,

− (iii) or two gadgets of order 5 and k−3 gadgets of order 3,

− (iv) or one gadget of order 1 and k gadgets of order 3,

− (v) or one gadget of order 4 and k−1 gadgets of order 3,

and joining these gadgets by their binding vertices to obtain

a tree.
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two g3’s, one g2 and one g5

three g3’s and one g4

Trees T with 13 vertices and w(T ) = 8
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We can almost characterize the graphs for which the bound is

tight: we can do it in the cases n = 3k, k ≥ 1, and n = 3k + 2,

k ≥ 1; the case n = 3k + 1 is more complex, and we are only

able to state a conjecture for k ≥ 6.

Definition 10. A connected graph G is said to be
maximal if, when we add any edge to G, we obtain
a graph G′ verifying: w(G′) < w(G).

We denote by ω(n) the maximum minimum number of watchers

needed in a connected graph of order n, i.e.,

ω(n) = max{w(G) : G connected of order n}.

We have just established that

ω(n) = b
2n

3
c for n /∈ {1, 2, 4},

and we have characterized the trees of order n reaching ω(n).

Now, we want to describe all the maximal connected graphs

of order n which reach ω(n).

Using Lemma 3, the graphs of order n which reach ω(n)

are exactly the connected partial graphs

of the maximal connected graphs of order n reaching ω(n).
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The unique maximal graph of order 15
reaching the bound ω(15) = 10.

Theorem 11. Let k be an integer, k ≥ 1, and G
be a maximal graph of order 3k.

We have:

w(G) = 2k ⇔ G is obtained by taking a collection
of k K3’s, choosing one vertex named a binding
vertex in each K3, and connecting these k binding
vertices by Kk.
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The two maximal graphs of order 17 reaching the bound

The additional maximal graph of order 8 reaching the bound

Theorem 12. (a) Let k be an integer, k ≥ 3, and G be a

maximal graph of order 3k + 2. We have:

w(G) = 2k + 1 ⇔ G is obtained by taking a collection of

k K3’s and one K2, or k − 1 K3’s and one K5, choosing

one vertex named a binding vertex in each of these complete

graphs, and connecting these binding vertices by Kk+1 if we

have taken a K2, and by Kk if we have taken a K5.

(b) If G is a maximal graph of order 8, then we have:

w(G) = 5 ⇔ G is the graph given above, or G is obtained by

following the rules given in Case (a), for k = 2.

(c) The only maximal graph G of order 5 with w(G) = 3

is the clique K5.
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New gadgets (of order 7)

Conjecture 13. Let k be an integer, k ≥ 6, and G be a

maximal graph of order 3k + 1.

We have:

w(G) = 2k ⇔ G is obtained by:

− (i) taking two K2’s and k − 1 K3’s,

− (ii) or taking one K2, one K5 and k − 2 K3’s,

− (iii) or taking two K5’s and k − 3 K3’s,

− (iv) or taking one K4 and k − 1 K3’s,

− (v) or taking one g7 and k − 2 K3’s,

choosing one vertex named a binding vertex on each of the

complete components Ki, except on K4 for which we choose

two binding vertices, taking for the g7 one or two binding ver-

tex(ices) according to its type, and connecting these binding

vertices to form a complete graph with them.
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(a)
(b)

(c)

The graphs above are graphs of order 19 reaching

the bound ω(19) = 12:

(a) with one K2, one K5 and four K3’s;

(b) with one K4 and five K3’s;

(c) with one g7 and four K3’s;
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For n = 3k+1 with k ≤ 5, there are maximal graphs needing 2k

watchers which are not of the form described in the conjecture.

Above is a certified example for n = 16.
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4. Complexity: NP-completeness

Vertex cover in a graph G: C is a vertex cover if

∀e = xy ∈ E(G), x ∈ C or y ∈ C.

It is well known that the problem of finding the mini-
mum cardinality of a vertex cover in a given graph is
NP-hard, even when restricted to the class of planar
graphs whose maximum degree is at most 3,
class which we denote by PL(3).

With some additional work, we can also get rid of the
vertices with degree one, and restrict ourselves to the
class PL’(3) of all planar graphs where every vertex
has degree 2 or 3.
Then the following decision problem is NP-complete:

Min Vertex Cover in PL’(3)

• Instance: A graph G ∈PL’(3) and an
integer k;
• Question: Is there a vertex cover for G
with size at most k ?
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Min Watching System in PL(3)

• Instance: A planar graph G′, with max-

imum degree at most 3, and an integer k′;
• Question: Is there a watching system for

G′ with size at most k′ ?

Theorem 14. Min Watching System in PL(3)
is NP-complete.

Proof. 1. Min Watching System in PL(3) ∈ NP.

2. Take G (with m edges) and k, instance of Min Vertex

Cover in PL’(3). Construct G′ by replacing every edge xy

of G by the structure Sxy depicted below.

-

-

. .

. .

/ /

/ /

Sxy x

x

y

y

axy

bxy

G′ has n + 2m vertices and 3m edges: the construction is

polynomial. Moreover, if G ∈PL’(3), then G′ ∈PL(3).

We set k′ = k + m. The proof is complete if we prove that

G admits a vertex cover of size at most k if and only if

G′ admits a watching system of size at most k′.
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Assume first that C is a vertex cover of G.

We define a watching system W in G′ as follows:

− for every vertex x of V (G) such that x ∈ C, we add the

watcher (x, NG′[x]) to W ;

− for every edge e = xy of G, we add the watcher (axy, NG′[axy])

to W .

It is easy to see that W is a watching system in G′. Consider a

vertex x in G; since it has degree at least 2 in G, it is adjacent

to at least two vertices y1 and y2 in G. So the corresponding

vertex x in G′ is checked by, at least, the two watchers located

at axy1
and axy2

, belonging respectively to the structures Sxy1

and Sxy2
, and thus x is identified by W . Also note that for ev-

ery edge e = xy of G, since either x or y belong to the vertex

cover C, there is a watcher in W that separates axy from bxy.

Thus G′ admits a watching system with size |C| + m ≤ k′.
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Let V ′
xy = {axy, bxy}.

Conversely, assume that W is a watching system of G′

of size at most k′.

Consider an edge xy ∈ E(G) and the watchers located

in the structure Sxy of G′. Then:

− if no watcher is located at x nor y, there must be at least

two watchers located in V ′
xy;

− if at least one watcher is located at x or y, we still need at

least one watcher in V ′
xy.

So if we denote by C the set of vertices x ∈ V (G) such that W
contains a watcher located at x, and by p the number of edges

xy of G with x 6∈ C and y 6∈ C, we have

|C| ≤ |W| − 2p − (m − p) ≤ k′ − m − p ≤ k − p.

Therefore if we add to C one vertex for every uncovered edge of

G, we get a vertex cover of G of size at most k.
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5. Watching systems in paths and cycles

Theorem 15. For all n ≥ 1, we have:

w(Pn) =

⌈

n + 1

2

⌉

.

Constructions proving that
⌈

n+1
2

⌉

is an upper bound are easy to

find; actually it is sufficient to use identifying codes: on paths,

watching systems are no better than identifying codes, except

for n = 2, when no identifying code exists.

Theorem 16. We have w(C4) = 3, and for n = 3
and all n ≥ 5:

w(Cn) =
⌈n

2

⌉

.

For identifying codes, we know that:

the cycle of length three admits no identifying code,

i(C4) = i(C5) = 3,

i(Cn) = n
2 when n is even, n ≥ 6,

i(Cn) = n+3
2 when n is odd, n ≥ 7.

So i(Cn) = w(Cn) when n = 5 or n is even, n ≥ 4,

and i(Cn) = w(Cn) +1 when n is odd, n ≥ 7.

Conclusion: Watching systems do not bring much !
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6. Watching sets of vertices

Generalization to r ≥ 1 and ` ≥ 1:

(r,≤ `)-watching systems

Let W be a set of r-watchers in G.

If A ⊂ V (G), we define the W-label of A as

LW(A) =
⋃

v∈A

{watchers checking v}.

(r,≤ `)-watching system: all the labels of the subsets A of V (G)

with 1 ≤ |A| ≤ ` are 6= ∅ and distinct.

A (r,≤ `)-watching system is a (r′,≤ `′)-watching system

if `′ ≤ ` and r′ ≥ r.

`-superimposed family:

S = {S1, S2, . . . , Sk} finite family of distinct nonempty subsets

of a set X , integer ` ≥ 1.

S is a `-superimposed family on X if, whenever we consider two

distinct sets I, J included in {1, . . . , k} with 1 ≤ |I| ≤ ` and

1 ≤ |J | ≤ `, we have:
⋃

i∈I

Si 6=
⋃

j∈J

Sj.
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If W is a (r,≤ `)-watching system in a graph G,

then the family of all W-labels of the vertices of G

is a `-superimposed family on W .

The family of singletons of X is always

a `-superimposed family of X for all ` ≥ 1, and so

every graph G admits a (r,≤ `)-watching system

for all r ≥ 1 and ` ≥ 1, consisting of every vertex

v ∈ V (G) checking itself.

Observe that if ` ≥ 2 and i 6= j, then Si ⊆ Sj

is impossible in a `-superimposed family.

From this follows that if |LW(x)| = 1 for a vertex x

in the graph with watching system W , then if ` ≥ 2

the watcher checking x must check only x:

we will call such a watcher a hermit.

Wlog, we can suppose that this watcher is located at x.
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6.1 (1,≤ 2)-watching systems

in paths and cycles

Lemma 17. For 1 ≤ k ≤ 4, the only 2-superimposed
family on a set with k elements with at least k sub-
sets is the family of k singletons.

In other words, with k watchers, 1 ≤ k ≤ 4, we can produce

k valid labels, which will be singletons, and not more.

Theorem 18. For all n ≥ 1, the minimum size
of a (1,≤ 2)-watching system in the path Pn is
equal to

{

n if n ≤ 10,
⌈

5(n+1)
6

⌉

if n > 10.

Proof. The proof for the lower bound is by induction on n.

The study of the small cases is done using Lemma 17.

We give a construction that matches the lower bound.

For n ∈ {1, 2, . . . , 10}, we need at least n watchers,

and we can do it with n hermits.

29



For n = 11, see the left part of the Figure below.

When n = 6k − 1, k ≥ 3, for which at least 5k watchers are

necessary, use the left part of the Figure, add the pattern of the

last six vertices to the right of the right-most vertex, x11, change,

for these new vertices, 6, 7, 8, 9, 10 into 11, 12, 13, 14, 15, and so

on: see the right part of Figure.

When n = 6k + i, k ≥ 2, i ∈ {0, 1, 2, 3, 4}, for which at least

5k + i + 1 watchers are necessary, we use the construction for

6k − 1 and manage with some additional work.

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 5 6 7 8 9 10 5k − 1 5k

1,2
1,3

2,4
3,5

4,5
5,6

6,7
6,8

7,9
8,10

9,10 5k − 1, 5k

Observe also that no (1,≤ 2)-identifying code

(and more generally, no (1,≤ `)-identifying code)

exists in the path Pn, because,

since NPn[x1] ⊆ NPn[x2], the sets of vertices

{x2} and {x1, x2} cannot be separated.
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Theorem 19. For all n ≥ 3, the minimum size of
a (1,≤ 2)-watching system in the cycle Cn is d5

6ne,
except for n = 6, for which it is 6.

Proof. The small cases, up to n = 5, are easy to handle.

The proof of the case n = 6 is the most cumbersome.

The lower bound in the general case makes use of the proof for

the paths.

Constructions meeting the lower bound are easy: take a path

with n− 1 vertices together with the construction of an optimal

(1,≤ 2)-watching system described in the proof of Theorem 18.

Add a vertex xn which is linked to x1 and xn−1, and assign to xn

the label {w1, w2}, where w1 is located at x1 and w2 is located

at xn−1 (in our construction, there are always watchers located

at each end of the path). You obtain a (1,≤ 2)-watching system

for Cn, of size d5n
6 e, for n ≥ 7.

The reason why this construction does not work for n = 6 is

that there would be three labels, {1, 3}, {3, 5} and {1, 5}, whose

pairwise unions are equal to {1, 3, 5}.

If we compare to (1,≤ 2)-identifying codes in Cn, we can see

that, because BCn(xi, 1) and BCn(xi, 1) ∪ BCn(xi+1, 1) differ by

only one vertex, xi+2, this vertex, hence by symmetry all vertices,

must belong to the code. Starting from n = 7, the only (1,≤ 2)-

identifying code in the cycle Cn is V (Cn).
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6.2 (1,≤ `)-watching systems

in paths and cycles for ` ≥ 3

Like every graph, the path Pn and the cycle Cn admit a (1,≤ `)-

watching system, which is the trivial watching system, made of

all the hermits. For Pn and Cn, this is the best we can do:

Theorem 20. For all n ≥ 1 (resp., n ≥ 3) and
` ≥ 3, the minimum size of a (1,≤ `)-watching
system in the path Pn (resp., the cycle Cn) is n.

Finally, observe that for ` ≥ 3, no (1,≤ `)-identifying code

exists in the cycle Cn, because the sets of vertices {1, 3} and

{1, 2, 3} (or more generally, {x, x + 2} and {x, x + 1, x + 2})
cannot be separated.

(1,≤ 2) (1,≤ `), ` ≥ 3

path id. code does not exist does not exist

watching syst.

{

n if n ≤ 10
⌈

5(n+1)
6

⌉

if n > 10
n

cycle id. code n does not exist

watching syst. d5n
6 e if n 6= 6 n

Conclusion: Here, watching systems are efficient.
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