Watching Systems in the King Grid

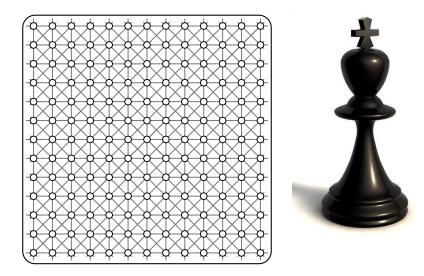
David Auger

Laboratoire PRISM Université de Versailles Saint-Quentin-en-Yvelines Versailles, France

liro Honkala

Department of Mathematics Turku University Turku, Finland

The King Grid



Identifying Code

- $\bullet \ \mathcal{C} \ \text{set} \ \text{of vertices} \ (\text{i.e.} \ \subset \mathbb{Z}^2)$
- label of a vertex $a \in \mathbb{Z}^2$ (w.r.t. \mathcal{C}, r)

$$\mathcal{L}_{\mathcal{C}}(a) := \{c \in \mathcal{C} : a \in B(c, r)\}$$

$$= B(a, r) \cap C$$

• label of $A \subset \mathbb{Z}^2$

 $\mathcal{L}_{\mathcal{C}}(A) := \cup_{a \in A} \mathcal{L}_{\mathcal{C}}(a)$ • \mathcal{C} is an $(r, \leq \ell)$ -identifying code if whenever $A, B \subset \mathbb{Z}^2$ with $|A|, |B| \leq \ell$, one has

 $A \neq B \Longrightarrow \mathcal{L}_{\mathcal{C}}(A) \neq \mathcal{L}_{\mathcal{C}}(B).$

Watching System

- An *r*-watcher is a couple (c, Z(c))with $c \in \mathbb{Z}^2$ and $Z \subset B(c, r)$
- ullet $\mathcal W$ is a set of *r*-watchers
- label of a vertex $a \in \mathbb{Z}^2$ (w.r.t. \mathcal{W},r)

$$\mathcal{L}_{\mathcal{W}}(a) := \{w \in \mathcal{W} : a \in Z(c)\}$$

• label of $A \subset \mathbb{Z}^2$

$$\mathcal{L}_{\mathcal{W}}(A) := \cup_{a \in A} \mathcal{L}_{\mathcal{W}}(a)$$

• \mathcal{W} is an $(r, \leq \ell)$ -watching system if whenever $A, B \subset \mathbb{Z}^2$ with $|A|, |B| \leq \ell$, one has

$$A \neq B \Longrightarrow \mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B).$$

	$\ell=1$	$\ell=2$	$\ell \geq 3$
<i>r</i> = 1	$D_{1,1} = \frac{2}{9}$	$\frac{5}{12} \le D_{2,1} \le \frac{3}{7}$	∄
	[CHL02; Coh+01]	[Pel09] [HL03]	[HL03]
<i>r</i> = 2	$D_{2,1}=rac{1}{8}$	$\frac{31}{120} \le D_{2,2} \le \frac{2}{7}$	∄
	[Cha+04]	[HL03] [Pel09]	[HL03]
$r \ge 3$	$D_{r,1}=\frac{1}{4r}$	$D_{r,2}=\frac{1}{4}$	∄
	[Cha+04]	[HL03]	[HL03]

[CHL02] Charon, Hudry, and Lobstein "Identifying codes with small radius in some infinite regular graphs"

 $[{\sf Coh+01}]$ Cohen, Honkala, Lobstein, and Zémor "On codes identifying vertices in the two-dimensional square lattice with diagonals"

[HL03] Honkala and Laihonen "Codes for identification in the king lattice"

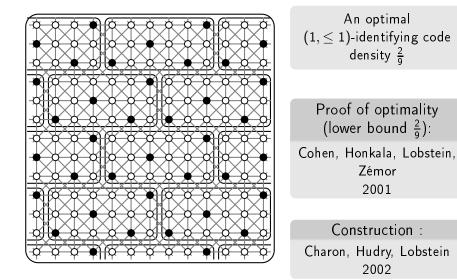
[Pel09] Pelto "New bounds for $(r, \leq 2)$ -identifying codes in the infinite king grid"

Minimum densities for $(r, \leq \ell)$ -id code in the King grid

\Box 1	$\ell=1$	$\ell = 2$	$\ell \geq 3$
r = 1	$D_{1,1}=rac{2}{9}$	$\frac{5}{12} \le D_{2,1} \le \frac{7}{7}$	∄
	[CHL02; Coh+01]	[Pel09] [HL03]	[HL03]
<i>r</i> = 2	$D_{2,1} = \frac{1}{8}$	$\frac{31}{120} \le D_{2,2} \le \frac{2}{7}$	∄
\square	[Cha+04]	[HL03] [Pel09]	[HL03]
$r \ge 3$	$D_{r,1}=\frac{1}{4r}$	$D_{r,2} = \frac{1}{4}$	∄
	[Cha+04]	[HL03]	[HL03]

Comparison with watching systems

1: Minimum density of Id-codes for r = 1 and $\ell = 1$



What about watching systems ?

Theorem

The minimal density of a $(1, \leq 1)$ -watching system in the King grid is $\frac{2}{9}$.

idea of proof

- only the lower bound to prove
- double-count (in a finite area) the number of pairs (w, x) where $d(w, x) \leq 1$
- show that if there are local configurations with few watchers, there are more around with lots of watchers
- (shake)
- it works

	$\ell = 1$	$\ell=2$	$\ell \geq 3$
<i>r</i> = 1	$D_{1,1} = \frac{2}{9}$	$\frac{5}{12} \le D_{2,1} \le \frac{3}{7}$	∄
	[CHL02; Coh+01]	[Pel09] [HL03]	[HL03]
<i>r</i> = 2	$D_{2,1}=rac{1}{8}$	$\frac{31}{120} \le D_{2,2} \le \frac{2}{7}$	∄
2	[Cha+04]	[HL03] [Pel09]	[HL03]
$r \ge 3$	$D_{r,1}=\frac{1}{4r}$	$D_{r,2}=\frac{1}{4}$	∄
	[Cha+04]	[HL03]	[HL03]

Theorem

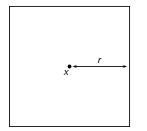
The minimal density w_r of an $(r, \leq 1)$ -watching system in the King grid satisfies

$$w_r \sim_{r \to +\infty} \frac{\log_2 r}{2r^2} = o\left(\frac{1}{4r}\right)$$

Theorem

The minimal density w_r of an $(r, \leq 1)$ -watching system in the King grid satisfies

$$w_r \sim_{r \to +\infty} rac{\log_2 r}{2r^2} = o\left(rac{1}{4r}
ight)$$



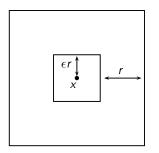
Upper bound: $\rightarrow (2r+1)^2$ vertices in B(x,r) $\rightarrow \log_2((2\lfloor \epsilon r \rfloor + 1)^2 + 1)$ in the centre for identification by dichotomy $w_r \leq \frac{\lceil \log_2((2r+1)^2+1) \rceil}{(2r+1)^2} \sim \frac{\log_2 r}{2r^2}$

Theorem

The minimal density w_r of an $(r, \leq 1)$ -watching system in the King grid satisfies

$$w_r \sim_{r \to +\infty} \frac{\log_2 r}{2r^2} = o\left(\frac{1}{4r}\right)$$

٧



Lower bound: To identify vertices in $B(x, \epsilon r)$ we need

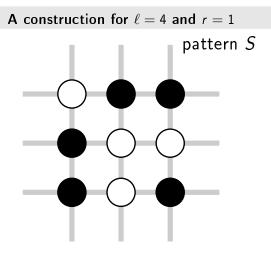
$$\log_2((2\lfloor\epsilon r
floor+1)^2+1)$$
vatchers centred in $B(x,(1+\epsilon)r).$

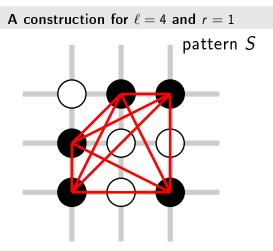
$$w_r \geq \frac{\log_2((2\epsilon r+1)^2+1)}{(2\lceil (1+\epsilon)r\rceil+1)^2} \sim \frac{\log_2 r}{2(1+\epsilon)^2 r^2}$$

3: Watching sets of vertices within distance 1

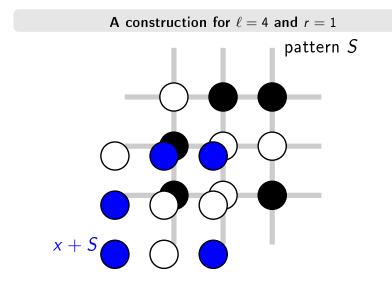
	$\ell=1$	$\ell = 2$	$\ell \geq 3$
<i>r</i> = 1	$D_{1,1} = \frac{2}{9}$	$\frac{5}{12} \le D_{2,1} \le \check{7}$	∄
	[CHL02; Coh+01]	[Pel09] [HL03]	[HL03]
<i>r</i> = 2	$D_{2,1}=rac{1}{8}$	$\frac{31}{120} \le D_{2,2} \le \frac{2}{7}$	∄
	[Cha+04]	[HL03] [Pel09]	[HL03]
<i>r</i> ≥ 3	$D_{r,1}=\frac{1}{4r}$	$D_{r,2} = \frac{1}{4}$	∄
	[Cha+04]	[HL03]	[HL03]

Relevant question for Watching Systems Is there a $(1, \leq \ell)$ -WS with density stricly less than 1 ?





pairwise differences between elements of S are distinct



pairwise differences between elements of S are distinct \implies translates of S have at most 1 vertex in common

Construction:

- put a watcher on every vertex, with watching zone S (identification with translates of S);
- then remove a few watchers.

A construction for $\ell = 4$ and r = 1

Construction:

- put a watcher on every vertex, with watching zone S (identification with translates of S);
- then remove a few watchers.

Idea of proof

• Choose $A \neq B$ sets of at most 4 vertices, show $\mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B)$

Construction:

- put a watcher on every vertex, with watching zone S (identification with translates of S);
- then remove a few watchers.

Idea of proof

- Choose $A \neq B$ sets of at most 4 vertices, show $\mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B)$
- If $a \in A \setminus B$
 - a has label a S, size 5. • by S's property we have $(a - S) \setminus (B - S) \neq \emptyset$ • so $\mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B)$!

Construction:

- put a watcher on every vertex, with watching zone S (identification with translates of S);
- then remove a few watchers.

Idea of proof

- Choose $A \neq B$ sets of at most 4 vertices, show $\mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B)$
- If $a \in A \setminus B$
 - a has label a S, size 5.
 - by S's property we have $(a S) \setminus (B S) \neq \emptyset$
 - so $\mathcal{L}_{\mathcal{W}}(A) \neq \mathcal{L}_{\mathcal{W}}(B)$!
- In fact L_W(A)∆L_W(B) has size at least 2 → remove a few watchers from W

A construction for $\ell = 4$ and r = 1

Generalization:

Theorem

Let $\ell \geq 2$. Assume that there exists a set S of $\ell + 1$ vertices

$$S = \{s_1, s_2, \ldots, s_{\ell+1}\} \subseteq B(0, r)$$

such that all the pairwise differences $s_i - s_j$ for $1 \le i < j \le \ell + 1$ are different. Then there is an $(r, \le \ell)$ watching system with density

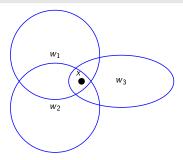
$$D = 1 - \frac{1}{(4r+1)^2} < 1$$

in the King grid.

In the King grid every $(1, \leq \ell)$ -watching system with $\ell \geq 6$ has density at least 1.

Lemma

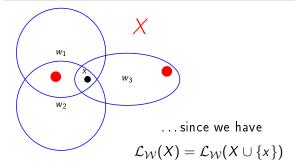
A set X of vertices, not containing x, but intersecting all the zones of the watchers watching x, has size at least ℓ .



In the King grid every $(1, \leq \ell)$ -watching system with $\ell \geq 6$ has density at least 1.

Lemma

A set X of vertices, not containing x, but intersecting all the zones of the watchers watching x, has size at least ℓ .



In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

(elements of) Proof.

Suppose ${\mathcal W}$ is a $(1,\leq 6) ext{-WS}$.

Every watcher w has weight 1 and confers a weight $\frac{1}{|Z(w)|}$ to all its watched vertices.

 \longrightarrow Show that all vertices have weight 1

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

(elements of) Proof. Suppose \mathcal{W} is a $(1, \leq 6)$ -WS. Every watcher w has weight 1 and confers a weight $\frac{1}{|Z(w)|}$ to all its watched vertices.

 \longrightarrow Show that all vertices have weight 1

If x is watched by only 1 *watcher:* OK.

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

(elements of) Proof. Suppose \mathcal{W} is a $(1, \leq 6)$ -WS. Every watcher w has weight 1 and confers a weight $\frac{1}{|Z(w)|}$ to all its watched vertices.

 \longrightarrow Show that all vertices have weight 1

If x is watched by only 1 watcher: OK.

If not \longrightarrow at least 6 watchers since

To cover the zones of those watchers watching x with vertices $\neq x$, you need at least 6 vertices

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 9 or more watchers

 $\longrightarrow x$ has weight at least

$$9 imes rac{1}{9}$$

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 8 watchers: $w_1, w_2, w_3, \cdots, w_8$

To cover the zones of those watchers watching x with vertices $\neq x$, you need at least 6 vertices

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 8 watchers: $w_1, w_2, w_3, \cdots, w_8$

To cover the zones of those watchers watching x with vertices $\neq x$, you need at least 6 vertices

If w_1, w_2, w_3 can be covered with one vertex $\neq x$ we need 5 vertices to cover w_4, w_5, w_6, w_7, w_8 \rightarrow zones pairwise distinct in B(x, 2) (except in x) weight of x at least

$$\frac{3}{9} + \frac{5}{1 + \frac{24}{5}} > 1$$

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 8 watchers

 $w_1, w_2, w_3, \cdots, w_8$

and three of these watchers cannot be covered with 1 vertex $\neq x$

Every vertex of B(x,2) - x watched by at most 2 of $w_1, w_2 \cdots w_8$

weight of x at least

$$\frac{8}{\frac{48}{8}+1} > 1$$

Theorem

In the King grid every $(1, \leq \ell)$ -watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 7 *watchers*

at least 5 have pairwise distinct zones – except in x

weight of x at least

$$\frac{2}{9} + \frac{5}{\frac{24}{5} + 1} > 1$$

Theorem

In the King grid every (1, $\leq \ell$)-watching system with $\ell \geq 6$ has density at least 1.

If x is watched by 6 *watchers*

all the watchers have pairwise distinct zones except in x

weight of x at least

$$rac{6}{rac{24}{6}+1} > 1$$

(the end)

Thank you for your attention