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HEREDITARILY FINITE SETS

I Set theory, under the standard axioms Zermelo-Fraenkel,
provides a bottom-up construction of the “universe of all
sets”

I The standard model: von Neumann’s cumulative
hierarchy of sets. Its subclass of hereditarily finite sets, HF:

I V0 = ∅,
I Vi+1 = P(Vi).

I For example,
I V1 = {∅},
I V2 =

{
∅, {∅}

}
,

I V3 =
{
∅, {∅}, {{∅}}, {∅, {∅}}

}
, . . .

HF =
⋃
i∈N

Vi.
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REPRESENTING SETS BY DIGRAPHS

{
∅, {{∅}}, {∅, {∅}}

}

The transitive closure of a set x

TrCl(x) := x ∪
⋃
y∈x

TrCl(y).

∅

{{∅}} {∅, {∅}}

{∅}

DEFINITION

The membership digraph of the set x is(
TrCl(x) , {u→ v | u, v ∈ TrCl(x) ∧ u 3 v}

)
.
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SET GRAPHS

DEFINITION

A digraph D is extensional if ∀u 6= v ∈ V(G), N+(u) 6= N+(v).

I There is a bijection between membership digraphs and
unlabeled extensional acyclic digraphs (EADs).

MAIN QUESTION

Characterize the underlying (undirected) graphs of EADs.
I if a graph admits an EA orientation, we say it is a set graph.

Initial motivation: the graph-theoretic expressive power of HF:
I a set graph can be represented by the transitive closure

from which it originates (e.g. in {log}, CLP(SET ), Referee)
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SEPARATING CODES

I Given a digraph D, we say that a subset C ⊆ V(D) is a
separating code if

∀u 6= v ∈ V(D), it holds that N−[u] ∩ C 6= N−[v] ∩ C.

[Foucaud, Naserasr, Parreau, 2010]

I Given a digraph D, we say that a subset C ⊆ V(D) is an
open-out-separating code (ooSC) if

∀u 6= v ∈ V(D), it holds that N+(u) ∩ C 6= N+(v) ∩ C.

I A digraph D admits an ooSC⇔ D is extensional.
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BASIC PROPERTIES

I Every set graph is connected (since every EA orientation
must have a unique sink)

I There are connected graphs which are not set graphs: e.g.,
the claw, K1,3

? ?

?

? ?

PROPOSITION

If G is a set graph, then for every X ⊆ V(G), G− X has at most 2|X|

connected components.

I The only trees that are set graphs are paths.
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BASIC PROPERTIES

THEOREM

If G has a Hamiltonian path, then G is a set graph.

x z y

Not all set graphs have a Hamiltonian path:
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RECOGNIZING SET GRAPHS IS NP-COMPLETE

Let S(G) be obtained from G by subdividing each edge once.

THEOREM

G has a Hamiltonian path⇔ S(G) is a set graph.

“⇒”:

“⇐”: prove that any EA orientation of S(G) has a directed path
passing through all vertices of G.
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MORE ON COMPLEXITY

An EAD is said to be

I slim, if the removal of any arc disrupts extensionality
I dependent, if the reversal of any arc disrupts extensionality

or acyclicity

By the same reduction, it is NP-complete also to decide
whether a graph

I admits a slim EA orientation;
I admits a dependent EA orientation.

Counting the EA, slim EA, dependent EA orientations of a
given graph is #P-complete.

12 / 20
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CONNECTED CLAW-FREE GRAPHS ARE SET GRAPHS
Many interesting graph properties can be expressed in terms of
forbidden induced subgraphs.

THEOREM

If G is a connected claw-free graph, then G is a set graph;
an EA orientation can be found in polynomial time.

Proof (algorithm) idea:
I start with an acyclic orientation with a unique sink
I there can be no collision among three vertices

w

x y z

I use claw-freeness to ‘resolve’ each collision, by reversing at
most two arcs
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MORE ON CLAW-FREENESS

apple K2,3 dart co-(K3 + 2K1)

THEOREM

If G is (apple, K2,3, dart, co-(K3 + 2K1))-free and connected, then

G is a set graph⇔ G is claw-free.

I this is the largest hereditary class with this property

14 / 20
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GENERALIZED CLAWS AND r-EXTENSIONALITY

What about forbidding K1,r+2, for any r ≥ 1?

DEFINITION

A digraph is said to be r-extensional if for any v ∈ V(D),

|{u ∈ V(D) | N+(u) = N+(v)}| ≤ r.

THEOREM

A K1,r+2-free graph G admits an r-extensional acyclic orientation⇔
G has at most r connected components.

15 / 20
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FINDING A MINIMUM SIZE OOSC
C ⊆ V(D) is an open-out-separating code (ooSC) if

∀u 6= v ∈ V(D), it holds that N+(u) ∩ C 6= N+(v) ∩ C.

THEOREM

It is NP-complete to decide whether a digraph has an ooSC of size at
most k, even when restricted to acyclic digraphs.

Proof: A simple reduction from the NP-hard problem of finding
a minimum size discriminating code in a bipartite graph.
[Charbit, Charon, Cohen, Hudry, Lobstein, 2006, 2008]

Given a bipartite graph G = (A ] B,E), we say that a subset
C ⊆ B is a discriminating code (DC) if

∀u 6= v ∈ A, it holds that N(u) ∩ C 6= N(v) ∩ C 6= ∅.

17 / 20



SETS, DIGRAPHS, (OPEN-OUT-)SEPARATING CODES RESULTS ON SET GRAPHS FINDING A MINIMUM SIZE OPEN-OUT-SEPARATING CODE

FINDING A MINIMUM SIZE OOSC
C ⊆ V(D) is an open-out-separating code (ooSC) if

∀u 6= v ∈ V(D), it holds that N+(u) ∩ C 6= N+(v) ∩ C.

THEOREM

It is NP-complete to decide whether a digraph has an ooSC of size at
most k, even when restricted to acyclic digraphs.

Proof: A simple reduction from the NP-hard problem of finding
a minimum size discriminating code in a bipartite graph.
[Charbit, Charon, Cohen, Hudry, Lobstein, 2006, 2008]

Given a bipartite graph G = (A ] B,E), we say that a subset
C ⊆ B is a discriminating code (DC) if

∀u 6= v ∈ A, it holds that N(u) ∩ C 6= N(v) ∩ C 6= ∅.
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FINDING A MINIMUM SIZE OOSC (2)

A

B

DG:

x1 x2 x3 x4 x5x0

I G = (A ] B,E) has a DC C ⊆ B of size at most k⇔
DG has an ooSC of size at most k + |B|.
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CONCLUSIONS

I Set graphs arise from set theory, but have many (practical)
applications

I Recognizing set graphs is NP-complete

I Set graphs generalize:
I graphs with a Hamiltonian path
I connected claw-free graphs (an EA orientation can be

found in poly-time)
I claw-freeness and set graphs are quite intertwined

I Connections between sets/set theory and
identifying/separating codes.
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MERSI!
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