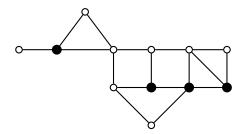
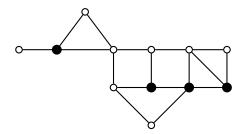
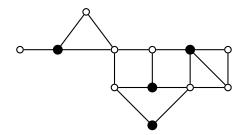

Sufficient conditions for the existence of two disjoint independent dominating sets

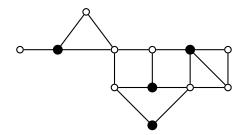
Oliver Schaudt


Department for Computer Science Group Faigle/Schrader University of Cologne

BWIC 2011




• A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset

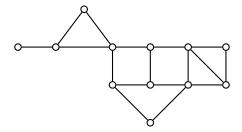

• A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset

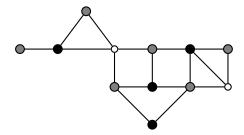
- A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset
- An **independent dominating set** is dominating set that is also an independent set

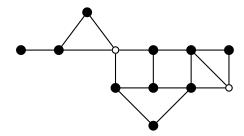

- A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset
- An **independent dominating set** is dominating set that is also an independent set

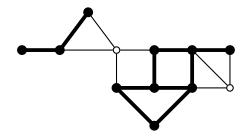
- A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset
- An **independent dominating set** is dominating set that is also an independent set

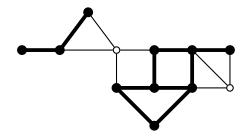
Problem In a given graph, are there two disjoint independent dominating sets?

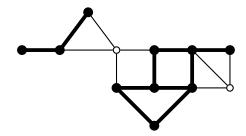

Oliver Schaudt (Cologne)

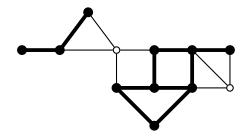


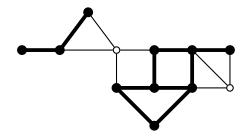

- A **dominating set** is a vertex subset such that any vertex outside of the subset has a neighbor in the subset
- An **independent dominating set** is dominating set that is also an independent set


Problem In a given graph, are there two disjoint independent dominating sets?

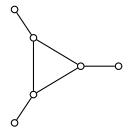

Oliver Schaudt (Cologne)

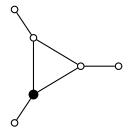


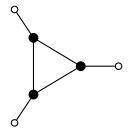


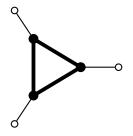

• the union of two disjoint independent dominating sets

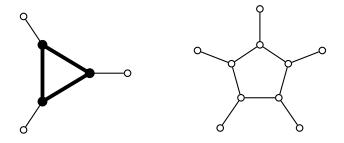
- the union of two disjoint independent dominating sets
- is a dominating set without isolated vertices (a total dominating set)

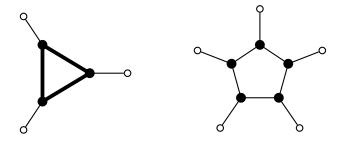

- the union of two disjoint independent dominating sets
- is a dominating set without isolated vertices (a total dominating set)
- its induced subgraph is bipartite

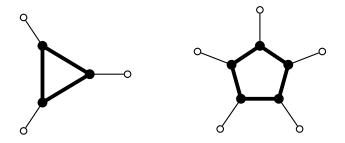


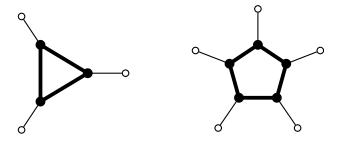

- the union of two disjoint independent dominating sets
- is a dominating set without isolated vertices (a total dominating set)
- its induced subgraph is bipartite

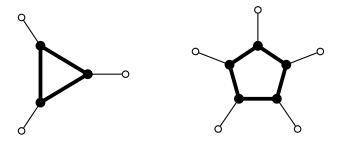

Lemma


A graph has two disjoint independent dominating sets *iff* it has a bipartite total dominating set.



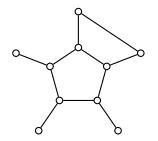




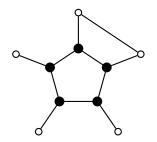


 coronas of chordless odd cycles (odd coronas) are minimal graphs without bipartite total dominating sets

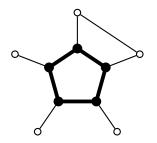
- coronas of chordless odd cycles (odd coronas) are minimal graphs without bipartite total dominating sets
- Structural domination theorems [Bacsó, Tuza, S.] ~→ there are no other minimal graphs without bipartite total dominating sets


- coronas of chordless odd cycles (odd coronas) are minimal graphs without bipartite total dominating sets
- Structural domination theorems [Bacsó, Tuza, S.] → there are no other minimal graphs without bipartite total dominating sets

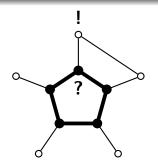
Theorem

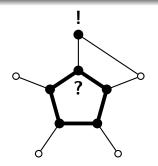

Every odd-corona-free graph has two disjoint independent dominating sets.

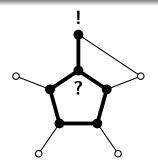
Theorem

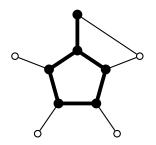

Theorem

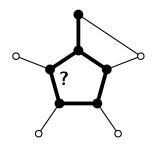
Theorem


Theorem

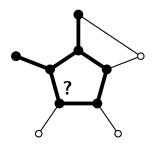

Theorem


Theorem

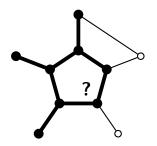

Theorem

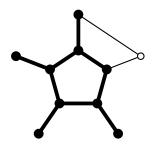

Theorem

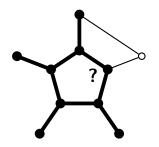

Theorem

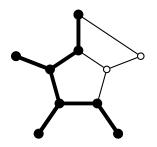

Theorem

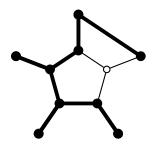
Theorem


Theorem

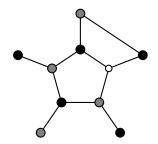

Theorem


Theorem

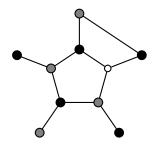

Theorem


Theorem

Theorem


Theorem

Theorem

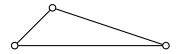


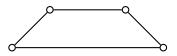
Theorem

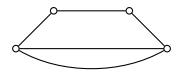
Theorem

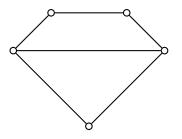
There is a polynomial algorithm that finds, for any input graph, either two disjoint independent dominating sets or an induced odd corona.

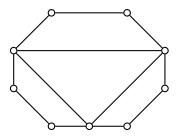
Corollary


Every odd-corona-free graph has two disjoint independent dominating sets and such sets can be computed in polynomial time.

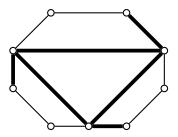

Oliver Schaudt (Cologne)

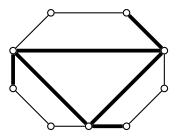

disjoint independent dominating sets


റ








• a multigraph is called **series-parallel** if it is obtained from K₂ by edge subdivisions and / or addition of parallel edges

Theorem

Every series-parallel graph has two disjoint independent dominating sets.

• a multigraph is called **series-parallel** if it is obtained from K₂ by edge subdivisions and / or addition of parallel edges

Theorem

Every series-parallel graph has two disjoint independent dominating sets.

Thanks!

Oliver Schaudt (Cologne)