Open neighborhood Locating-Dominating sets OLD(G)

Suk J. Seo

Peter J. Slater

Middle Tennessee State University

University of Alabama in Huntsville

Computer Science Department

Mathematical Sciences Department

And Computer Science Department

sseo@mtsu.edu

slaterp@math.uah.edu

pslater@cs.uah.edu

209. Open neighborhood locating-dominating sets, Australasian J. Comb. 46, 2010, 109-119.

211. Open neighborhood locating-dominating in trees, Discrete Applied Math. 159, 2011, 484-489.

212. Open neighborhood locating-dominating for infinite cylinders, Proc. Asso. Comp. Mach. SE 2011, 334-335.

xxx. Open neighborhood locating-dominating for grid-like graphs, Bull. Inst. Comb. Appl., to appear.

163. Fault-tolerant locating-dominating sets, Discrete Math. 249 (2002) 179-189.

xxx I.Honkala, T. Laihonen and S. Ranto, On strongly identifying codes, Discrete Math. 254 (2002) 191-205.

 $M^{IDNT}(n) = OLD(Q_n)$: "identifying codes with non-transmitting faulty vertices"

$$OLD(P_6) = 4$$

$$OLD(P_4) = 4$$

 $OLD(P_3)$

OLD(H) = 3

S C V(G) is an open-locating-dominating (OLD) set if for each vertex w we have N(w) Π S \neq \emptyset and w \neq x implies N(w) Π S \neq N(x) Π S.

The open-locating dominating number OLD(G) is the minimum cardinality of an OLD(G)-set.

Theorem 1. G has an OLD(G)-set iff $\delta(G) \ge 1$ and $w \ne x$ implies $N(w) \ne N(x)$.

Theorem 2. If OLD(G) = h, then $|V(G)| \le 2^h - 1$.

To see that this upper bound is achieved, let C_h be the cycle on $h \ge 5$ vertices, $V(C_h) = \{v_1, v_2, ..., v_h\}$ and $E(C_h) = \{v_1v_2, v_2v_3, ..., v_{h-1}v_h, v_hv_1\}$. Note that $N(v_i) = \{v_{i-1}, v_{i+1}\}$ (mod h), and the open neighborhoods $N(v_1), ..., N(v_h)$ are distinct. We can add $2^h - 1 - h$ additional vertices, each of which has a distinct open neighborhood in $V(C_h)$, to obtain a graph G_h with $|V(G_h)| = 2^h-1$ and $OLD(G_h)=h$.

THEOREM. Decision problem "Is OLD(G) ≤ K?" is NP-complete.

As noted in Garey and Johnson, Problem 3-SAT is NP-complete.

INSTANCE: Collection $C = \{c_1, c_2, ..., c_M\}$ of clauses on set $U = \{u_1, u_2, ..., u_N\}$ such that $|c_i| = 3$ for $1 \le i \le M$.

QUESTION: Is there a satisfying truth assignment for C?

Open-Locating-Dominating (OLD)

INSTANCE: Graph G = (V, E) and positive integer $K \le |V|$.

OUESTION: Is $OLD(G) \le K$?

Theorem 3 [14]. Problem OLD is NP-complete.

Proof. Clearly OLD € NP. We show a polynomial time reduction from 3-SAT to OLD. Given U and C, for each u_i construct the graph G_i on 21 vertices illustrated in Figure 2(a), and for each clause c_i construct the graph H_i illustrated in Figure 2(b). Finally, to complete the construction of graph G, for $1 \le j \le M$ if clause $C_j = \{u_{j,1}, u_{j,2}, u_{j,3}\}$ where each $u_{j,t}$ is some u_i or i, let clause vertex c_j be adjacent to variable vertices $u_{j,1}$, $u_{j,2}$ and $u_{j,3}$. Note that G has 21N +7M vertices and 27N +10M edges and can be constructed from C in polynomial time.

Figure 2: Variable and clause graphs G_i and H_j , $1 \le i \le N$, $1 \le j \le M$

If $S \subseteq V(G)$ is any OLD(G)-set, then S must contain every vertex adjacent to an endpoint because S is open-dominating. That is, S contains the 9N+3Mdarkened vertices of Figure 2. Because $N(w_i) \cap S = \{x_i\} \neq N(v_i) \cap S$, it must be the case that $(N(v_i) \cap S) \cap \{u_i, u_i\} \neq \emptyset$. Likewise, $N(a_i) \cap S = \{b_i\} \neq N(c_i) \cap S$, so $S \cap \{u_{j,1}, u_{j,2}, u_{j,3}\} \neq \emptyset$.

It is now easy to see that C has a satisfying truth assignment if and only if

 $OLD(G) = (9N + 3M) + N = 10N + 3M. \square$

PATH P_N and CYCLE C_N

- $S \Pi \{ V_{i-1}, V_{i+1} \} \neq \emptyset.$
- Assume $S \Pi \{ V_i, V_{i+1} \} = \emptyset$:

$$V_{i\text{-}4} \quad V_{i\text{-}3} \quad V_{i\text{-}2} \quad V_{i\text{-}1} \quad V_{i} \quad V_{i\text{+}1} \quad V_{i\text{+}2} \quad V_{i\text{+}3} \quad V_{i\text{+}4} \quad V_{i\text{+}5}$$

• Assume $\{V_{i-1}, V_{i+1}\}$ C S and $V_i \in S$:

$$V_{i\text{--}4} \quad V_{i\text{--}3} \quad V_{i\text{--}2} \quad V_{i\text{--}1} \quad V_{i} \quad V_{i\text{+-}1} \quad V_{i\text{+-}2} \quad V_{i\text{+-}3} \quad V_{i\text{+-}4} \quad V_{i\text{+-}5}$$

- If S is an OLD(P_n)-set for n≥5, then {v₂,v₄} C S and |S Π {v₁,v₃, v₅} | =
 2.
- \rightarrow OLD(P_n) \geq (2/3)n.

N	OLD(PN)	OLD(C _N)
6k	4k	4k 0-0-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
6k+1	4k+1	4k+1
6k+2	4k+2	4k+2
6k+3	4k+3 *	4k+2 0-0-0-0-0-0-0
6k+4	4k+4 *	4k+4 *
6k+5	4k+4	4k+4

Fig. 1. All trees $T \in \mathfrak{D}$ of order $n \leq 9$.

09. 500, 1.9. states / Discrete Applied Muthematics 139 (2011) 484-489

Fig. 2. All trees $T \in \mathfrak{I}$ of order n = 10.

Fig. 1. All trees $T \in \mathfrak{I}$ of order $n \leq 9$.

486

S.J. Seo, P.J. Slater / Discrete Applied Mathematics 159 (2011) 484-489

Fig. 2. All trees $T \in \mathfrak{I}$ of order n = 10.

Fig. 3. $OLD(T_n)$ -sets where $OLD(T_n) = n - 1 \ge 4$.

We will say that vertex set $S \subseteq V(G)$ open-distinguishes vertex u if $\emptyset \neq N(u) \cap S \neq N(x) \cap S$ for all $x \in V(G) - u$. In particular, an OLD-set for G must open-distinguish every vertex.

Observation 5. (i) If u is a support vertex of an endpoint $v \in V(G)$, then every OLD-set dominates v, so u is in every OLD-set S of G. (ii) If u, v, w, x is a path in a graph G with degrees G uege G and G is an OLD-set, then G is a fixed G or else G uege G is a vertex G and G is a well as support vertices G and G is a tree) and G is a tree and G is a vertex G is a tree and G is a vertex G in particular, if G is a vertex G is a vertex G is a vertex G in G in G is a vertex G in G in G in G is a vertex G in G in G in G is a vertex G in G is a vertex G in G in G in G is a vertex G in G is a vertex G in G in G in G in G in G is a vertex G in G

Theorem 6. For $n \ge 5$ there is a unique tree T_n of order n with $OLD(T_n) = n - 1$. If n = 2k, then T_n is obtained by subdividing all but one of the edges of the star $K_{1,k}$, and the $OLD(T_{2k})$ -set is unique. If n = 2k + 1, then T_n is the subdivision graph of $K_{1,k}$, and there are two essentially different $OLD(T_{2k+1})$ -sets as illustrated in Fig. 3.

Proof. Clearly the trees T in Fig. 3 (of diameter four) satisfy OLD(T) = |V(T)| - 1 with the OLD(T)-sets precisely as indicated. If $T \in \mathfrak{I}$ and $diam(T) \leq 3$, then T must be P_2 or P_4 . If $T \in \mathfrak{I}$ and $diam(T) \geq 5$, let u, v, w, \ldots, a, b, c be a diametric path (necessarily, $deg \ v = deg \ b = 2$). If w is the support vertex of a vertex x, let $v_1 = x$. Otherwise, let $v_1 = u$. Likewise, if an

TREES

 $\mathbf{T} = \{ T_n : \text{no two endpoints have the same support vertex} \}$ (I = s)

Theorem (Slater, 1987)

$$(1/3)n < LD(T_n) \le n-1$$

(Blidia, et al 2007)

$$(n+l-s+1)/3 \le LD(T_n) \le (n+l-s)/2$$

(Bertrand, et al 2005) $3(n+1)/7 \le IC(T_n)$

(Blidia, et al 2007) $3(n+l-s+1)/7 \le IC(T_n)$

(PS and Sewell, 2011+)

$$IC(T_n) \le (2/3)(n-1/2) + l-s$$

OBSERVATIONS: Let S be an OLD(T)-set.

- (i) u a support vertex of endpoint $v \rightarrow u \in S$
- (ii) path u,v,w,x with deg u = deg x = 1 and deg v = $2 \rightarrow u \in S$

(iii) $|N(u) \Pi S| \ge 2 \rightarrow S$ open-distinguishes u.

Theorem(Seo and PS, 2010) $(n/2) + 1 \le OLD(T_n) \le n-1$ for $T \in \mathbf{F}$ and $n \ge 5$. Proof. $(\le n-1)$

(OLD(T_n)= n-1 iff diam(T) = 4)

CLAIM: OLD(T_N) $\geq \Gamma N/2 + 1$

Fig. 4. The unique tree T_{2k} of order $n=2k\neq 4$ with $OLD(T_{2k})=k+1=\lceil n/2\rceil+1$.

э.j. эео, г.j. эшter / Discrete Appnea Mathematics 159 (2011) 484–489

Fig. 5. $OLD(T_{2k+1}) = k + 2$. Each T^i is a (possibly empty) comb.

Fig. 4. The unique tree T_{2k} of order $n = 2k \neq 4$ with $OLD(T_{2k}) = k + 1 = \lceil n/2 \rceil + 1$.

Then,

488

S.J. Seo, P.J. Slater / Discrete Applied Mathematics 159 (2011) 484-489

Fig. 5. $OLD(T_{2k+1}) = k + 2$. Each T^i is a (possibly empty) comb.

Lemma 13. If $OLD(T_{2k}) = k + 1 \ge 4$, then T_{2k}^* is a path on k + 1 vertices.

Proof. If x is an endpoint of T_{2k}^* with support vertex $t \in V(T_{2k}^*)$, then t cannot be the support vertex in T_{2k} of an endpoint t of T_{2k} or else (as in the proof of Lemma 11), t of t or else (as in the proof of Lemma 11), t of t or else t of t or else (as in the proof of Lemma 11), t of t or else t or else

Thus we have the following theorem.

Theorem 14. If $OLD(T_{2k}) = k + 1 \ge 4$, then T_{2k}^* is a path $v_1, v_2, \ldots, v_k, v_{k+1}$ where v_i is a support vertex of T_{2k} if and only if $i \notin \{2, k\}$. The only other tree of even order achieving lower bound $OLD(T_n) = n/2 + 1$ is P_2 .

For odd values of n with $OLD(T_n) = \lceil n/2 \rceil + 1$ one might or might not have all of the interior vertices in an $OLD(T_n)$ -set S. Note that in Fig. 1 there are three trees of order 9 with OLD-sets of order 6. Two of these have OLD-sets of both types, while the third has all of its interior vertices in its unique OLD-set S. We first show that at most one interior vertex will not be in S.

Lemma 15. If $OLD(T_n) = \lceil n/2 \rceil + 1$, then, for $OLD(T_n)$ -set S, at most one interior vertex is not in S.

Proof. Assume that v_1 and v_2 are distinct interior vertices not in S. By Proposition 10, n is odd and $deg\ v_1 = deg\ v_2 = 2$. Let T^1 (respectively, T^2) be the subtree that is the component of $T_n - v_1$ (respectively, $T_n - v_2$) that does not contain v_2 (respectively, v_1). Let T^3 be the third component of $T_n - v_1 - v_2$. By Proposition 10, $|V(T^1)|$ and $|V(T^2)|$ are even, and so $|V(T^3)|$ is odd. Let $S_i = S \cap V(T^i)$ for $1 \le i \le 3$. Then $v_1, v_2 \notin S$ implies that S_i is an OLD-set for T^i . Now $|S_1| \ge n_1/2 + 1$, $|S_2| \ge n_2/2 + 1$, and $|S_3| \ge (n_3 + 1)/2 + 1$. Thus, $|S| \ge (n_1 + n_2 + n_3 + 2)/2 + 5/2 = \lceil n/2 \rceil + 2$, a contradiction. \square

Following from Proposition 10 and Lemma 15, we have the following theorem.

Theorem 16. If $OLD(T_{2k+1}) = k + 2$ and S is an $OLD(T_{2k+1})$ -set with interior vertex $v \notin S$, then T_{2k+1} is as in Fig. 5(a) where trees E^1 and E^2 are even order trees on n_1 and n_2 vertices with $OLD(E^i) = n_i/2 + 1$, and the neighbors of v are in S. (See Theorem 14 and Fig. 4.)

It remains to characterize the odd order trees T_{2k+1} with an OLD (T_{2k+1}) -set S of order k+2 in which every interior vertex is in S, $V(T_{2k+1}^*) \subseteq S$. There are two cases to consider depending on whether or not S contains an endosint of T

Figure 5: An $OLD(Z \times Z)$ - tiling

For the infinite grid $Z \times Z$ that is regular of degree 4, by Theorem 12, $OLD\%(Z \times Z) \ge 2/(1+4) = 2/5$. To show that $OLD\%(Z \times Z) \le 2/5$, we observe that $Z \times Z$ is bipartite and partition $V(Z \times Z)$ into two groups, say square vertices and round vertices as shown Figure 5(b). If we use 4/10 of the round vertices by repeating the tile pattern shown in Figures 5(a,b), all of the square vertices are open-dominated and located. Similarly 2/5 of the square vertices can open-dominate and locate the round vertices, so we have $OLD\%(Z \times Z) \le 2/5$ which results in the following theorem.

Theorem 13. For infinite square grid $Z \times Z$, $OLD\%(Z \times Z) = 2/(1+4) = 2/5$.

For the infinite hexagonal grid HX that is regular of degree 3, by Theorem 12, $OLD\%(HX) \geq 2/(1+3) = 1/2$. To show that $OLD\%(HX) \leq 1/2$, we observe that HX is bipartite and partition V(HX) into square vertices and round vertices. The set containing 1/2 of the round vertices, as shown in Figure 6(b), dominates and locates all of the square vertices. Similarly 1/2 of the square vertices can open-dominate and locate the round vertices, so we have $OLD\%(HX) \leq 1/2$ which results in the following theorem.

Theorem 14. For infinite hexagonal grid HX, OLD%(HX) = 2/(1+3) = 1/2.

For the infinite triangular grid TR that is regular of degree 6, by Theorem

Figure 6: Infinite hexagonal grid HX

12, $OLD\%(TR) \ge 2/(1+6) = 2/7$. The set of darkened vertices shown n Figure 7 is an OLD-set and its cardinality is 1/3, so we have $OLD\%(TR) \le 1/3$ which results in the following theorem. To date, we have not determined the exact value for OLD%(TR).

Theorem 15. For the infinite triangular TR which is regular of degree six, we have $2/7 \le OLD\%(TR) \le 1/3$.

Figure 7: Infinite triangular grid TR

2. INFINITE CYLINDERS

To illustrate these concepts, consider the infinite cylindrical graphs $P_{\infty} : C_k$ for infinite path P_{∞} and cycle C_k , as shown in Figure 2 for k=3 and 4. Because the 4-cycle C_4 does not have an open-locating set (in particular, $V(C_4)$ is not open-locating), we have a special case for the infinite cylinders.

(a)

Theorem 3. For k = 3 and $k \ge 5$ we have $OLD\%(P_x : C_k) = 2/5$, and $OLD\%(P_x : C_k) = 3/7$.

Proof. When $k \neq 4$, we can use every second and fourth cycle in each successive set of five cycles as in Figure 2(a). Specifically, $D = \{v_{ij} | 1 \leq j \leq k \text{ and } i \equiv 2 \text{ or } 4 \pmod{5}\}$ is open-locating. Hence, $OLD\%(P_x \Box C_k) \leq 2/5$. By Theorem 2, $OLD\%(P_x \Box C_k) \geq 2/5$.

Now, consider $P_{\infty}\Box C_4$. Figure 2(b) shows an *OLD*-set using 3/7 of the vertices of $V(P_{\infty}\Box C_4)$, hence $OLD\%(P_{\infty}\Box C_4) \leq 3/7$. To see $OLD\%(P_{\infty}\Box C_4) \geq 3/7$, we will show that for all vertices x in an open-dominating set D, $sh^o(x; D) \leq 7/3$.

By Theorem 1 $sh''(x; D) \le 5/2 = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, and to achieve sh''(x; D) = 5/2, vertex x has to have a private neighbor and the other neighbors of x have to be dominated exactly twice. Let x be $v_{0,3}$ as shown in Figure 2(c). Suppose the private neighbor of x is on the C_4 , say $v_{0,4}$. Then, $v_{-1,4}$, $v_{1,4}$, $v_{0,1} \notin D$ and $v_{0,2}$ has to be dominated by either $v_{-1,2}$ or $v_{1,2}$. Without loss of generality assume that $v_{1,2} \in D$. Then, $N(v_{0,2}) \cap D = N(v_{1,3}) \cap D = \{x, v_{1,2}\}$, a contradiction. On the other hand, if the private neighbor of x is on the path, say $v_{1,3}$, then $v_{1,4}$, $v_{2,3}$, $v_{1,2} \notin D$ and $v_{0,2}$ has to be dominated by either $v_{-1,2}$ or $v_{0,1}$. If $v_{-1,2} \in D$, then $N(v_{-1,3}) \cap D = N(v_{0,2}) \cap D = \{x, v_{-1,2}\}$, a contradiction, and if $v_{0,1} \in D$, then $N(v_{0,2}) \cap D = N(v_{0,4}) \cap D = \{x, v_{0,1}\}$, a contradiction as well. Therefore, $sh''(x; D) \le 5/2 = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, which means that $sh''(x; D) \le 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, which means that $sh''(x; D) \le 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, which means that

(c)

Figure 2. Por Ck