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M 'PNT (n) = OLD(Qy): “identifying codes with non-transmitting faulty vertices”
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S C V(G) is an open-locating-dominating (OLD) set if for each vertex w we
have N(w) NS # @ and w # x implies N(w) NS # N(x) T S.

The open-locating dominating number OLD(G) is the minimum cardinality
of an OLD(G)-set.

Theorem 1. G has an OLD(G)-set iff §(G) > 1 and w # x implies N(w) # N(x).
Theorem 2. If OLD(G) = h, then |V(G)| < 2"~ 1.
To see that this upper bound is achieved, let Cnbe the cycleon h2 5 vertices, V(Cr) = {v1, vz, . . ., va} and

E(Ch) = {vava, vavs, . . ., Vh-1vh, vhvi}. Note that N(vi) = {viy, vi) (mod h), and the open neighborhoods N(v1), . .., N{vs)
are distinct. We can add 2" — 1 — h additional vertices, each of which has a distinct open neighborhood in V(C»), to

obtain a graph Gswith |V(Gh)| = 2'~1 and OLD(Gh)=h.



THEOREM. Decision problem “Is OLD(G) < K?" is NP-complete.

As noted in Garey and Johnson, Problem 3-SAT is NP-complete.

3-SAT
INSTANCE: Collection C={c1, ¢z, . . ., cm} of clauses on set U={wu, u2,

.., un} such that|e] =3 for 1 < i< M.
QUESTION: Is there a satisfying truth assignment for C?

Open-Locating-Dominating (OLD)
INSTANCE: Graph G = (V. E) and positive integer K<
QUESTION: Is OLD(G) < K?

Theorem 3 | 14]. Problem OLD is NP-complete.

) Proof. Clearly OLD € NP. We show a polynomial time reduction from 3-SAT to OLD. Given U and C, for
each uiconstruct the graph Gion 21 vertices illustrated in Figure 2(a), and for each clause ¢;construct the graph H;
illustrated in Figure 2(b). Finally, to complete the construction of graph G, for1<jsM if clause Ci={us.1, U2, U3}
where each ujtis some uior i, let clause vertex ¢jbe adjacent to variable vertices w1, w2 and uj3. Note that G has
21N +7M vertices and 27N +10M edges and can be constructed from C in polynomial time.

(a) (b)

Figure 2: Variable and clause graphs G; and H;, 1 <i <N, 1 <js<M

If S ¢ V(G) is any OLD(G)-set, then S must contain every vertex adjacent
to an endpoint because S is open-dominating. That is, S contains the 9N+3M
darkened vertices of Figure 2. Because N(wi) N S= {x} # N(vi) n S, it must be
the case that (N(vi) N S)N{u, ui} # 9. Likewise, N@a)n S = {bj} # N(c) N S,
s0 S L, w2, w3} # 9.
It is now easy to see that C has a satisfying truth assignment if and only if

OLD(G)= (9N +3M) + N= 10N +3M. 0
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SN { Vi-la Vi+1} # @
Assume SN {V, Vi,1} = 9:
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If Sis an OLD(P, )-set for n>5, then {v,,v4} CSand |S N {vy,v3 vs} | =

2.

- OLD(P,) > (2/3)n. 0=~ 0=~ Q= rmriQr==im-rm=-Qmmr
N OLD(Pn) OLD(Cy)
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Ek+2 4k+2 4k+2
6k+3 4k+3 * aks) — O-O0O00OOOO
bk+4 | 4k+4 * 4k+4 *
6k+5 4k+4 Ak+4

v e OLD(P,)-setS > sh®(v;S)<1+% =3/2
= |S] 2n/(3/2) =(2/3)n
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Fig. 2, Alltrees T € S of order n = 10.
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Fig.2. Alltrees T € Y ofordern = 10.
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Fig. 3. OLD(T,)-sets where oD(T) =n—1>4

We will say that vertex set S € V(G) open-distinguishes vertex u if @ # N(u) NS # Nx)NSforallx € V(G) —u.In
particular, an OLD-set for G must open-distinguish every vertex.

Observation 5. (i) If u is a support vertex of an endpoint v € V(G), then every OLD-set dominates v, so u is in every OLD-set S
of G. (i) If u, v, w, xis a path in a graph G with degrees degu = degx = 1anddegv = 2(asin Fig. 3)and § is an OLD-set, then
ueS(orelseN(w)NS =N NS)as well as support vertices v and w. (iii) If the girth of G satisfies g(G) = 5 (in particular, if
Gisatree)and IN(v) N S| = 2, then § open-distinguishes v.

Theorem 6. For n > 5 there is a unique tree Ty of order n with OLD(T,;) =n — 1L If n = 2k, then T, is obtained by subdividing
all but one of the edges of the star K y, and the OLD(Ty)-set is unique. If n = 2k + 1, then T, is the subdivision graph of Ky,
and there are two essentially different OLD(Ti41)-sets as illustrated in Fig. 3.

Proof. Clearlythe trees T inFig. 3 (of diameter four) satisfy OLD(T) = |[V(T)|—1 with the OLD(T)-sets precisely as indicated.

IfT € S and diam(T) < 3, then T must be P, or P, 1f T € & and diam(T) = 5, letu, v, w, ..., a,b, c be adiametric path
(necessarily, deg v = deg b = 2).1f w is the support vertex of a vertex x, let vy = X. Otherwise, let v; = u. Likewise, if an



TREES

¥ ={T,: no two endpoints have the same support vertex} (l=s)
Theorem (Slater,1987) (1/3)n <LD(T,) <n-1

(Blidia, et al 2007) (n+l-s+1)/3 < LD(T,) < (n+l-s)/2

(Bertrand, et al 2005)  3(n+1)/7 < IC(T,)

(Blidia, et al 2007) 3(n+l-s+1)/7 < IC(T,)

(PS and Sewell, 2011+) IC(T,) £ (2/3)(n-1/2) + I-s
OBSERVATIONS: Let S be an OLD(T)-set.

(i)  uasupport vertex of endpointv > ue S
(i) path u,v,w,x with deg u=degx=1 anddegv=2->UE€ES

(i) |N(u)nNS|=2 - Sopen-distinguishes u.



Theorem(Seo and PS, 2010) (n/2) + 1 < OLD(T,) £ n-1 for T € ¥ and n25.

Proof. (< n-1)

(OLD(T,)= n-1 iff diam(T)=4)



CLAIM: OLD(Ty) =T N/27| +1



Ss o0
e0 0
"e

% I i R s L e BT TV S RV 0

Tox m"'

Fig. 4. The unigue tree T;,_, of ordern = 2k # 4 with OLD(T) = k+ 1 = [n/2] + 1.
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Fig.5. OLD(Ty41) =k + 2. Each T'is a (possibly empty) comb.
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Fig. 4. The unique tree Ty, of order n = 2k # 4 withOLD(Ty) = k+ 1= [n/2] + 1.
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Fig.5. OLD(Tyi41) = k + 2. Each T' is a (possibly empty) comb.

Lemma 13. If CLD(Ty) = k+ 1 > 4, then T, is a path on k + 1 vertices.

Proof. If x is an endpoint of T;, with support vertex t € V(T,,), then t cannot be the support vertex in Ty of an endpoint
y of Ty, or else (as in the proof of Lemma 11), N(y) N § = {t} = N(x) N S, a contradiction. Also, no two endpoints x, and
xz of Ty, can have a common neighbor ¢ or else N(x;) NS = {t} = N(xz) N S, a contradiction. Now if T}, has a vertex of
degree at least three, then T, would have three endpoints with distinct support vertices that are not support vertices in Ty,
a contradiction because, as noted, there are exactly two vertices in V(T,) that are not support vertices of To,. O

Thus we have the following theorem.
Theorem 14. If OLD(T) = k + 1 = 4, then T3, is a path vy, vy, ..., Uk, Vyy Where vj is a support vertex of Tay if and only if
i & (2, k). The only other tree of even order achieving lower bound OLD(T,;) = n/2 + 1is P;.

For odd values of n with OLD(?,,) = [n/2] + 1 one might or might not have all of the interior vertices in an OLD(T,)-set

S. Note that in Fig. 1 there are three trees of order 9 with OLD-sets of order 6. Two of these have OLD-sets of both types,
while the third has all of its interior vertices in its unique OLD-set S. We first show that at most one interior vertex will not
beinS.

Lemma 15. If OLD(T,) = [n/2] + 1, then, for OLD(T,)-set S, at most one interior vertex is not in S.

Proof. Assume that vy and v, are distinct interior vertices not in 5. By Proposition 10, n is odd and deg v, = deg v; = 2.
Let T' (respectively, T?) be the subtree that is the component of T, — v, (respectively, T, — v,) that does not contain
v2 (respectively, v;). Let T* be the third component of T, — vy — v;. By Proposition 10, |[V(T")| and |V(T?)] are even,
and so |V(T?)] is odd. Let §; = SN V(T for1 < i < 3.Then vy, v; ¢ S implies that §; is an OLD-set for T'. Now
IS¢l = m/24+1,1S;| = ny/2 4+ 1,and |S3] = (n3 + 1)/2+ 1. Thus, |S| = (my +ny+n3 +2)/2+5/2 = [n/2] + 2,
a contradiction, O

Following from Proposition 10 and Lemma 15, we have the following theorem,
Theorem 16. If OLD(Tyyy) = k + 2 and S is an OLD(Tax41)-set with interior vertex v & S, then Ty is as in Fig. 5(a)where

trees E' and E? are even order trees on n, and n, vertices with OLD(E") = n;/2 + 1, and the neighbors of v are in S.
(See Theorem 14 and Fig. 4.)

It remains to characterize the odd order trees Ty with an OLD(Ty41)-set S of order k+ 2 in which every interior vertex
isinS, V(TS ,.) € S. There are two cases to consider denendine nn whethar ar nat € rantaine an andnnint AF T
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Figure 5: An OLD(Z x Z) - tiling

For the infinite grid Z x Z that is regular of degree 4, by Theorem 12,
OLD%(Z x Z) > 2/(1 +4) = 2/5. To show that OLD%(Z x Z) < 2/5, we
obscrve that Z x Z is bipartite and partition V(Z x Z) into two groups, say
squarc vertices and round vertices as shown Figure 5(b). 1f we usc 4/10 of
the round vertices by repeating the tile pattern shown in Figures 5(a,b), all
of the square vertices are open-dominated and located. Similarly 2/5 of the
square vertices can open-dominate and locate the round vertices, so we have
OLD%(Z x Z) < 2/5 which results in the following thcorem.

Theorem 13. For infinite square grid Z x Z, OLD%(Z x Z) = 2/(1+4) =
2/5.

For the infinite hexagonal grid A X that is regular of degree 3, by Theorem
12, OLD%(HX) > 2/(1 + 3) = 1/2. To show that OLD%(HX) < 1/2, we
observe that H X is bipartite and partition V(H X)) into square vertices and
round vertices. The set containing 1/2 of the round vertices, as shown in
Figure 6(b), dominates and locates all of the square vertices. Similarly 1/2
of the square vertices can open-dominate and locate the round vertices, so
we have OLD%(H X) < 1/2 which results in the following theorem.

Theorem 14. For infinite hezagonal grid HX, OLD%(HX) = 2/(1+3) =
1/2.

For the infinite triangular grid T'R that is regular of degree 6, by Theorem

11
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Figure 6: Infinite hexagonal grid H.X

12, OLD%(TR) > 2/(1+ 6) = 2/7. The set of darkened vertices shown n
Figure 7 is an OL D-set and its cardinality is 1/3, so we have OLD%(TR) <
1/3 which results in the following theorem. To date, we have not determined
the exact value for OLD%(TR).

Theorem 15. For the infinite triangular TR which s reqular of degree siz,
we have 2/7 < OLD%(TR) < 1/3.

Figure 7: Infinite triangular grid TR

12



2. INFINITE CYLINDERS

To illustrate these concepts, consider the infinite ¢y lindrical
graphs P,;|C; for infinite path P, and cycle C; , as shown in
Figure 2 for k = 3 and 4. Because the 4-cycle C, does not have an
open-locating set (in particular, ¥{C,) is not open-locating), we
have a special case for the infinite cy linders.

(a)

(b)

(c)

Figure 2. P C,

Theorem 3. For k=3 and k > 5 we have OLD%(P.. C,)=2/5. and
OLDY%(P,.~C,=3/1.

Proof. When & # 4, we can use every second and fourth ¢ycle in
each successive set of five cycles as in Figure 2(a). Specifically, D
={vyl 1 £j<kand i=2or4(mod3)} is open-locating. Hence,
OLD%(P,2Cy) < 2/5. By Theorem 2, OLD%(P,. iC,) = 2/5.

Now, consider P,.2Cy. Figure 2(b) shows an OLD-set using 3/7 of
the vertices of V(P,._Cy), hence OLDY%(P.. C,) < 3/7. To sce
OLD%(P..2C)) = 3/7, we will show that for all vertices x in an
open-dominating set D, sh”(x; D) < 7/3.

By Theorem 1 sh”(x; D) = 5/2 = | + 2+ A+, and to achieve
sh(x; D) = 572, vertex x has to have a private neighbor and the
other neighbors of x have to be dominated exactly twice. Let x be
voa as shown in Figure 2(c). Suppose the private neighbor ol x is
on the Cy, say vpa. Then, v 4 vis, ve, € D and vy> has to be
dominated by either v, or v;5. Without loss of generality
assume that v, > €D. Then, N(vp:) nD=N(vi3)n D = {x v},
a contradiction. On the other hand, if the private neighbor of x is
on the pah, say v,3, then v,4, vi3, vi2 € D and vos has to be
dominated by either v >0rvg,. If v, €D, then Ny, ) D=
N(voz) N D = {x. v, 2}, a contradiction, and it vy, €D, then
N(vgz) N D = Nvgs) m D= {x, vo,}, a contradiction as well.
Therefore, sh(x; D) < 5312 = 1 + %4 + Y4 +'4, which means that
sh(x; DY <1+ 4+ %B+173=7/3.
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