

Locating- and Distinguishing-Total Domination in Graphs

Michael A. Henning

Department of Mathematics University of Johannesburg

25 November 2011

イロン イヨン イヨン イヨン

3

• Let G = (V, E) be a graph without isolated vertices.

・ロン ・回 と ・ヨン ・ヨン

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a total dominating set, abbreviated TD-set, of G if every vertex of G is adjacent to a vertex in S.

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a total dominating set, abbreviated TD-set, of G if every vertex of G is adjacent to a vertex in S.
- The total domination number γ_t(G) of G is the minimum cardinality of a total dominating set.

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a total dominating set, abbreviated TD-set, of G if every vertex of G is adjacent to a vertex in S.
- The total domination number γ_t(G) of G is the minimum cardinality of a total dominating set.
- Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi in 1980. (Total domination in graphs. *Networks* 10 (1980), 211–219.)

イロン イヨン イヨン イヨン

A graph **G** with $\gamma_t(\mathbf{G}) = \mathbf{8}$.

Locating-Total Domination in Graphs

• Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set $S \subseteq V$ is a locating-total dominating set,

Locating-Total Domination in Graphs

- Let G = (V, E) be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set,

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set

伺下 イヨト イヨト

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set with the property that distinct vertices in V \ S are totally dominated by distinct subsets of S.

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set with the property that distinct vertices in V \ S are totally dominated by distinct subsets of S.
- Hence, S is a LTD-set of G if

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set with the property that distinct vertices in V \ S are totally dominated by distinct subsets of S.
- Hence, S is a LTD-set of G if S is a TD-set of G

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set with the property that distinct vertices in V \ S are totally dominated by distinct subsets of S.
- Hence, S is a LTD-set of G if S is a TD-set of G such that for distinct vertices u, v ∈ V \ S,

(4 回) (4 回) (4 回)

Locating-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a locating-total dominating set, abbreviated LTD-set, of G if S is a TD-set with the property that distinct vertices in V \ S are totally dominated by distinct subsets of S.
- Hence, S is a LTD-set of G if S is a TD-set of G such that for distinct vertices u, v ∈ V \ S,

 $N(u) \cap S \neq N(v) \cap S.$

イロト イポト イヨト イヨト

Locating-Total Domination in Graphs

Every graph G with no isolated vertex has a LTD-set since V is such a set.

高 とう モン・ く ヨ と

Locating-Total Domination in Graphs

- Every graph G with no isolated vertex has a LTD-set since V is such a set.
- The locating-total domination number γ^L_t(G) of G is the minimum cardinality of a LTD-set.

伺 ト イミト イミト

Locating-Total Domination in Graphs

- Every graph G with no isolated vertex has a LTD-set since V is such a set.
- The locating-total domination number γ^L_t(G) of G is the minimum cardinality of a LTD-set.
- The study of locating dominating sets in graphs was pioneered by **Peter Slater**:

伺 ト イミト イミト

Locating-Total Domination in Graphs

- Every graph G with no isolated vertex has a LTD-set since V is such a set.
- The locating-total domination number γ^L_t(G) of G is the minimum cardinality of a LTD-set.
- The study of locating dominating sets in graphs was pioneered by **Peter Slater**:

[1] Dominating and location in acyclic graphs. *Networks* **17** (1987), 55–64.

Locating-Total Domination in Graphs

- Every graph G with no isolated vertex has a LTD-set since V is such a set.
- The locating-total domination number γ^L_t(G) of G is the minimum cardinality of a LTD-set.
- The study of locating dominating sets in graphs was pioneered by **Peter Slater**:

[1] Dominating and location in acyclic graphs. *Networks* **17** (1987), 55–64.

[2] Dominating and reference sets in graphs. *J. Math. Phys. Sci.* **22** (1988), 445–455.

イロト イヨト イヨト イヨト

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees. *Aust. J. Combin.* **39** (2007), 219–232.

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees. *Aust. J. Combin.* **39** (2007), 219–232.

[4] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees. *Aust. J. Combin.* **42** (2008), 309–319.

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees. *Aust. J. Combin.* **39** (2007), 219–232.

[4] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees. *Aust. J. Combin.* **42** (2008), 309–319.

[5] **M. Chellali**, On locating and differentiating-total domination in trees. *Discussiones Math. Graph Theory.* **28**(3) (2008), 383–392.

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees. *Aust. J. Combin.* **39** (2007), 219–232.

[4] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees. *Aust. J. Combin.* **42** (2008), 309–319.

[5] **M. Chellali**, On locating and differentiating-total domination in trees. *Discussiones Math. Graph Theory.* **28**(3) (2008), 383–392.

[6] M. Chellali and N. J. Rad, Locating-total domination critical graphs. *Aust. J. Combin.* **45** (2009), 227–234.

Locating-Total Domination in Graphs

• Locating-total dominating sets in graphs has been studied by several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees. *Aust. J. Combin.* **39** (2007), 219–232.

[4] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees. *Aust. J. Combin.* **42** (2008), 309–319.

[5] **M. Chellali**, On locating and differentiating-total domination in trees. *Discussiones Math. Graph Theory.* **28**(3) (2008), 383–392.

[6] M. Chellali and N. J. Rad, Locating-total domination critical graphs. *Aust. J. Combin.* **45** (2009), 227–234.

[7] X. G. Chen and M. Y. Sohn, Bounds on the locating-total domination number of a tree. *Discrete Appl. Math.* **159** (2011) 769–773.

Locating-Total Domination in Graphs

• In this talk, we will mention results from the following six papers, especially two recent results from [9] and [13]:

Locating-Total Domination in Graphs

• In this talk, we will mention results from the following six papers, especially two recent results from [9] and [13]:

[8] **T. W. Haynes**, **MAH**, and **J. Howard**, Locating and total dominating sets in trees. *Discrete Applied Math.* **154** (2006), 1293–1300.

[9] **MAH** and **C. Löwenstein**, Locating-total domination in claw-free cubic graphs, manuscript (2011+).

[10] **MAH** and **J. McCoy**, Locating and paired-dominating sets in graphs. *Discrete Applied Math.* **157** (2009), 3268–3280.

[11] **MAH** and **J. McCoy**, Which trees have a differentiating-paired dominating set? *J. Combin. Optim.* **22** (2011), 1–18.

[12] **MAH** and **N. Rad**, Locating-total domination in graphs, manuscript (2011+).

[13] **MAH**, and **A. Yeo**, Distinguishing-total dominating sets in cubic graphs, manuscript (2011+).

Observations

• Every LTD-set of a graph is also a TD-set of the graph.

・ 回 と ・ ヨ と ・ ヨ と

3

Observations

- Every LTD-set of a graph is also a TD-set of the graph.
- Observation 1. $\gamma_t(\mathbf{G}) \leq \gamma_t^{\mathsf{L}}(\mathbf{G})$ for every graph **G**.

イロン イヨン イヨン イヨン

Observations

- Every LTD-set of a graph is also a TD-set of the graph.
- Observation 1. $\gamma_t(\mathbf{G}) \leq \gamma_t^{\mathsf{L}}(\mathbf{G})$ for every graph **G**.
- Observation 2. Let S be a LTD-set in a graph G and let $X \subseteq V$.

イロト イポト イヨト イヨト

Observations

- Every LTD-set of a graph is also a TD-set of the graph.
- Observation 1. $\gamma_t(\mathbf{G}) \leq \gamma_t^{\mathsf{L}}(\mathbf{G})$ for every graph **G**.
- Observation 2. Let S be a LTD-set in a graph G and let $X \subseteq V$. (a) If N[u] = N[v] for every pair $u, v \in X$, then $|S \cap X| \ge |X| - 1$.

イロト イポト イラト イラト 一日

Observations

- Every LTD-set of a graph is also a TD-set of the graph.
- Observation 1. $\gamma_t(\mathbf{G}) \leq \gamma_t^{\mathsf{L}}(\mathbf{G})$ for every graph **G**.
- Observation 2. Let S be a LTD-set in a graph G and let $X \subseteq V$. (a) If N[u] = N[v] for every pair $u, v \in X$, then $|S \cap X| \ge |X| - 1$. (b) If N(u) = N(v) for every pair $u, v \in X$, then $|S \cap X| \ge |X| - 1$.

Observations

• Observation 3. For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.

イロン イ団ン イヨン イヨン 三日

Observations

- Observation 3. For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 4. For $n \ge 3$, $\gamma_t^L(C_n) = \gamma_t(C_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.

▲圖▶ ▲屋▶ ▲屋▶

3

Observations

- Observation 3. For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 4. For $n \ge 3$, $\gamma_t^L(C_n) = \gamma_t(C_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 5. For $n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_{1,n}) = n$.

▲圖▶ ▲屋▶ ▲屋▶
Locating-Total Domination in Graphs

Observations

- Observation 3. For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 4. For $n \ge 3$, $\gamma_t^L(C_n) = \gamma_t(C_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 5. For $n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_{1,n}) = n$.
- Observation 6. For $m \ge n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_{m,n}) = m + n 2$.

ヘロン 人間 とくほど 人間 とう

Locating-Total Domination in Graphs

Observations

- Observation 3. For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 4. For $n \ge 3$, $\gamma_t^L(C_n) = \gamma_t(C_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.
- Observation 5. For $n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_{1,n}) = n$.
- Observation 6. For $m \ge n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_{m,n}) = m + n 2$.
- Observation 7. For $n \ge 2$, $\gamma_t^{\mathsf{L}}(\mathsf{K}_n) = n 1$.

イロト イポト イヨト イヨト

Locating-Total Domination in Trees

• Haynes, MAH, and J. Howard (2006).

イロト イヨト イヨト イヨト

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of trees that can be obtained from k disjoint copies of P_4

- 4 同下 4 日下 4 日下

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of trees that can be obtained from k disjoint copies of P_4 by first adding k 1 edges incident only with support vertices so that the resulting graph is connected,

- 4 同下 4 日下 4 日下

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of **trees** that can be obtained from k disjoint copies of P_4 by first adding k 1 edges incident only with support vertices so that the resulting graph is **connected**, and then **subdividing** each **new added edge** exactly once.

- 4 同 ト 4 日 ト 4 日 ト

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of **trees** that can be obtained from k disjoint copies of P_4 by first adding k 1 edges incident only with support vertices so that the resulting graph is **connected**, and then **subdividing** each **new added edge** exactly once.
- Theorem 1. If T is a tree of order n,

- 4 同 ト 4 日 ト 4 日 ト

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of **trees** that can be obtained from k disjoint copies of P_4 by first adding k 1 edges incident only with support vertices so that the resulting graph is **connected**, and then **subdividing** each **new added edge** exactly once.
- Theorem 1. If T is a tree of order n, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \geq rac{2}{5}(\mathsf{n}+1),$

イロト イポト イヨト イヨト

- Haynes, MAH, and J. Howard (2006).
- Let $T \in \mathcal{T}_1$ be the family of **trees** that can be obtained from k disjoint copies of P_4 by first adding k 1 edges incident only with support vertices so that the resulting graph is **connected**, and then **subdividing** each **new added edge** exactly once.
- Theorem 1. If T is a tree of order n, then

$$\gamma_t^{\mathsf{L}}(\mathsf{T}) \geq rac{2}{5}(\mathsf{n}+1),$$

with equality if and only if $T \in T_1$.

イロト イポト イヨト イヨト

Locating-Total Domination in Trees

• M. Chellali (2008) proved the following two results.

<回> < 国> < 国> < 国>

Locating-Total Domination in Trees

- M. Chellali (2008) proved the following two results.
- Theorem 2. If T is a tree of order $n \ge 3$ with ℓ leaves and s support vertices,

Locating-Total Domination in Trees

- M. Chellali (2008) proved the following two results.
- Theorem 2. If T is a tree of order n ≥ 3 with ℓ leaves and s support vertices, then

$$\gamma^{\mathsf{L}}_{\mathsf{t}}(\mathsf{T}) \geq \frac{2}{5}(\mathsf{n}+\ell-\mathsf{s}+1),$$

Locating-Total Domination in Trees

- M. Chellali (2008) proved the following two results.
- Theorem 2. If T is a tree of order n ≥ 3 with ℓ leaves and s support vertices, then

$$\gamma^{\mathsf{L}}_{\mathsf{t}}(\mathsf{T}) \geq rac{2}{5}(\mathsf{n}+\ell-\mathsf{s}+1),$$

with equality if and only if $T \in T_1$.

Locating-Total Domination in Trees

• Theorem 3. If T is a tree of order n \geq 2 with s support vertices,

・ロン ・回 と ・ ヨ と ・ ヨ と

• Theorem 3. If T is a tree of order $n \ge 2$ with s support vertices, then

$$\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \geq rac{\mathsf{n}+2-\mathsf{s}}{2}$$

イロト イヨト イヨト イヨト

• Theorem 3. If T is a tree of order $n \ge 2$ with s support vertices, then

$$\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \geq rac{\mathsf{n}+2-\mathsf{s}}{2}$$

• The lower bound is sharp for paths P_n where $n \equiv 0 \pmod{4}$.

• Theorem 3. If T is a tree of order $n \ge 2$ with s support vertices, then

$$\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \geq rac{\mathsf{n}+2-\mathsf{s}}{2}$$

- The lower bound is sharp for paths P_n where $n \equiv 0 \pmod{4}$.
- Theorem 3 improves Theorem 2 for nontrivial trees with $n>4\ell+s-6.$

(1) マン・ション・

Locating-Total Domination in Trees

• Let $\textbf{T} \in \mathcal{T}_2$ be the family of labeled trees constructed as follows.

- 4 回 2 - 4 □ 2 - 4 □

Locating-Total Domination in Trees

- Let $\textbf{T} \in \mathcal{T}_2$ be the family of labeled trees constructed as follows.
- Assign to each vertex a label or status, denoted by $sta(\mathbf{v})$, as follows.

Locating-Total Domination in Trees

- Let $\textbf{T} \in \mathcal{T}_2$ be the family of labeled trees constructed as follows.
- Assign to each vertex a label or status, denoted by $sta(\mathbf{v})$, as follows.
- Let T₀ be a P₆ in which the two leaves have status C, the two support vertices have status A and the remaining two vertices have status B.

- 4 同 ト 4 日 ト 4 日 ト

Locating-Total Domination in Trees

- Let $T \in \mathcal{T}_2$ be the family of labeled trees constructed as follows.
- Assign to each vertex a label or status, denoted by $sta(\mathbf{v})$, as follows.
- Let T₀ be a P₆ in which the two leaves have status C, the two support vertices have status A and the remaining two vertices have status B.

- 4 同 ト 4 日 ト 4 日 ト

Locating-Total Domination in Trees

- Let $T \in \mathcal{T}_2$ be the family of labeled trees constructed as follows.
- Assign to each vertex a label or status, denoted by $sta(\mathbf{v})$, as follows.
- Let T₀ be a P₆ in which the two leaves have status C, the two support vertices have status A and the remaining two vertices have status B.

 For k ≥ 1, let T_k can be obtained recursively from T_{k-1} by one of the following operations.

イロト イポト イヨト イヨト

Locating-Total Domination in Trees

• Operation τ_1 .

- - 4 回 > - 4 回 > - 4 回 >

Locating-Total Domination in Trees

• Operation τ_1 . For any $y \in V(T_{k-1})$, if sta(y) = C and y is a leaf of T_{k-1} ,

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy.

向下 イヨト イヨト

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

$$\begin{array}{c|c} C & B & B & A & C \\ \hline y & x & w & v & z \end{array}$$

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

$$\begin{array}{c|c} C & B & B & A & C \\ \hline y & & & & \\ y & & & & \\ \end{array}$$

• Operation τ_2 .

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

$$\begin{array}{c|c} \mathbf{B} & \mathbf{B} & \mathbf{A} & \mathbf{C} \\ \hline \mathbf{V} & \mathbf{X} & \mathbf{W} & \mathbf{V} & \mathbf{Z} \end{array}$$

• Operation τ_2 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{B}$,

Locating-Total Domination in Trees

• Operation τ_1 . For any $y \in V(T_{k-1})$, if $\operatorname{sta}(y) = C$ and y is a leaf of T_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(x) = \operatorname{sta}(w) = B$, $\operatorname{sta}(v) = A$, and $\operatorname{sta}(z) = C$.

• Operation τ_2 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{B}$, then add a path xwv and edge xy.

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

• Operation τ_2 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{B}$, then add a path xwv and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{w}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{v}) = \mathbf{C}$.

(1日) (日) (日)

Locating-Total Domination in Trees

• Operation τ_1 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{C}$ and \mathbf{y} is a leaf of \mathbf{T}_{k-1} , then add a path xwvz and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \operatorname{sta}(\mathbf{w}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{v}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{z}) = \mathbf{C}$.

• Operation τ_2 . For any $\mathbf{y} \in \mathbf{V}(\mathbf{T}_{k-1})$, if $\operatorname{sta}(\mathbf{y}) = \mathbf{B}$, then add a path xwv and edge xy. Let $\operatorname{sta}(\mathbf{x}) = \mathbf{B}$, $\operatorname{sta}(\mathbf{w}) = \mathbf{A}$, and $\operatorname{sta}(\mathbf{v}) = \mathbf{C}$.

イロト イポト イラト イラト 一日

Locating-Total Domination in Trees

• Chen and Sohn (2011)

・ロン ・回 と ・ ヨ と ・ ヨ と

Locating-Total Domination in Trees

- Chen and Sohn (2011)
- Theorem 4. If T is a tree of order $n \ge 3$ with ℓ leaves,

イロト イヨト イヨト イヨト

Locating-Total Domination in Trees

• Chen and Sohn (2011)

• Theorem 4. If T is a tree of order $n \ge 3$ with ℓ leaves, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq rac{\mathsf{n}+\ell}{2},$

(ロ) (同) (E) (E) (E)

Locating-Total Domination in Trees

- Chen and Sohn (2011)
- Theorem 4. If T is a tree of order $n \ge 3$ with ℓ leaves, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq rac{\mathsf{n}+\ell}{2},$

with equality if and only if $T \in \mathcal{T}_2$.

・ロン ・回 と ・ヨン ・ヨン
Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex,

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex, then

$$\gamma_{\mathbf{t}}(\mathsf{T}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq \frac{3}{2}\gamma_{\mathbf{t}}(\mathsf{T}) - \mathbf{1}.$$

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex, then

$$\gamma_{\mathbf{t}}(\mathsf{T}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq \frac{3}{2}\gamma_{\mathbf{t}}(\mathsf{T}) - \mathbf{1}.$$

• Equality in lower bound:

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex, then

$$\gamma_{\mathbf{t}}(\mathsf{T}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq \frac{3}{2}\gamma_{\mathbf{t}}(\mathsf{T}) - 1.$$

• Equality in lower bound: Take T to be the corona of a nontrivial tree.

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex, then

$$\gamma_{\mathbf{t}}(\mathsf{T}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq \frac{3}{2}\gamma_{\mathbf{t}}(\mathsf{T}) - 1.$$

- Equality in lower bound: Take T to be the corona of a nontrivial tree.
- Equality is upper bound:

Locating-Total Domination in Trees

- Haynes, MAH, and J. Howard (2006)
- Theorem 5. If a nontrivial tree T contains no strong support vertex, then

$$\gamma_{\mathbf{t}}(\mathsf{T}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{T}) \leq \frac{3}{2}\gamma_{\mathbf{t}}(\mathsf{T}) - \mathbf{1}.$$

- Equality in lower bound: Take T to be the corona of a nontrivial tree.
- Equality is upper bound: Let T be a tree obtained from the disjoint union of k paths P₄ by joining a support vertex from one of these paths to a support vertex from each of the other k 1 paths and then subdividing each new edge twice.

Locating-Total Domination in Grid Graphs

• MAH, and Rad (2011)

(4回) (1日) (日)

Locating-Total Domination in Grid Graphs

- MAH, and Rad (2011)
- Theorem 6. If $n \equiv r \pmod{5}$, where $0 \leq r < 5$,

(本間) (本語) (本語)

Locating-Total Domination in Grid Graphs

- MAH, and Rad (2011)
- Theorem 6. If $n \equiv r \pmod{5}$, where $0 \leq r < 5$, then

$$\gamma_{\mathbf{t}}^{\mathbf{L}}(\mathbf{P}_{2} \Box \mathbf{P}_{\mathbf{n}}) = \begin{cases} 4\lfloor \frac{n}{5} \rfloor + r & \text{if } r \neq 1\\ 4\lfloor \frac{n}{5} \rfloor + 2 & \text{if } r = 1 \end{cases}$$

イロト イヨト イヨト イヨト

Locating-Total Domination in Grid Graphs

• Observation. If $n \equiv 0 \pmod{11}$,

- 4 回 2 - 4 □ 2 - 4 □

Locating-Total Domination in Grid Graphs

• Observation. If $n \equiv 0 \pmod{11}$, then

$$\gamma_{\mathsf{t}}^{\mathsf{L}}(\mathsf{P}_{\mathsf{3}} \,\square\, \mathsf{P}_{\mathsf{n}}) \leq rac{\mathsf{13}}{\mathsf{11}}\mathsf{n}$$

- 4 回 2 - 4 □ 2 - 4 □

Locating-Total Domination in Grid Graphs

• Observation. If $n \equiv 0 \pmod{11}$, then

 $\gamma_{\mathsf{t}}^{\mathsf{L}}(\mathsf{P}_{\mathsf{3}} \, \Box \, \mathsf{P}_{\mathsf{n}}) \leq \frac{13}{11}\mathsf{n}$

(本間) (本語) (注)

Locating-Total Domination in Grid Graphs

• Conjecture 1. For $n \ge 1$,

ヘロン 人間と 人間と 人間と

Locating-Total Domination in Grid Graphs

• Conjecture 1. For $n \ge 1$,

$$\gamma_{\mathsf{t}}^{\mathsf{L}}(\mathsf{P}_{\mathsf{3}} \,\square\, \mathsf{P}_{\mathsf{n}}) = \left| \begin{array}{c} rac{\mathsf{13}}{\mathsf{11}} \mathsf{n} \end{array}
ight|.$$

・ 回 と ・ ヨ と ・ ヨ と

Locating-Total Domination in Grid Graphs

• Conjecture 1. For $n \ge 1$,

$$\gamma_{t}^{\mathsf{L}}(\mathsf{P}_{3} \Box \mathsf{P}_{\mathsf{n}}) = \left\lceil \frac{13}{11} \mathsf{n} \right\rceil.$$

• Remark: The conjecture is true for small values of n, namely $1 \leq n \leq 12.$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

General Bounds

• MAH, and McCoy (2009)

・ロン ・聞と ・ほと ・ほと

3

General Bounds

- MAH, and McCoy (2009)
- Theorem 7. If G is a graph of order $n \ge 3$ and maximum degree $\Delta \ge 2$ with no isolated vertex,

イロン イ部ン イヨン イヨン 三日

General Bounds

- MAH, and McCoy (2009)
- Theorem 7. If G is a graph of order $n\geq 3$ and maximum degree $\Delta\geq 2$ with no isolated vertex, then

 $\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{2\mathsf{n}}{\mathbf{\Delta}+2}$

General Bounds

- MAH, and McCoy (2009)
- Theorem 7. If G is a graph of order $n\geq 3$ and maximum degree $\Delta\geq 2$ with no isolated vertex, then

$$\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{G}) \geq rac{2\mathsf{n}}{\mathbf{\Delta}+2}$$

and this bound is sharp.

イロン イ部ン イヨン イヨン 三日

General Bounds

• MAH, and Rad (2011)

・ロン ・回 と ・ ヨ と ・ ヨ と

General Bounds

- MAH, and Rad (2011)
- Theorem 8. If G is a connected graph of order $n \ge 2$,

イロン イヨン イヨン イヨン

General Bounds

- MAH, and Rad (2011)
- Theorem 8. If G is a connected graph of order $n \ge 2$, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{G}) \geq \lfloor \log_2 \mathsf{n} \rfloor$.

イロン イヨン イヨン イヨン

General Bounds

- MAH, and Rad (2011)
- Theorem 8. If G is a connected graph of order $n \ge 2$, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{G}) \geq \lfloor \log_2 \mathsf{n} \rfloor$.

• Theorem 9. For every two integers a,b with $2 < a+1 \leq b \leq 2^a+a-1,$

(ロ) (同) (E) (E) (E)

General Bounds

- MAH, and Rad (2011)
- Theorem 8. If G is a connected graph of order $n \ge 2$, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathsf{G}) \geq \lfloor \log_2 \mathsf{n} \rfloor$.

• Theorem 9. For every two integers \mathbf{a}, \mathbf{b} with $\mathbf{2} < \mathbf{a} + \mathbf{1} \le \mathbf{b} \le \mathbf{2^a} + \mathbf{a} - \mathbf{1}$, there exists a connected graph **G** of order \mathbf{b} with $\gamma_t^{\mathsf{L}}(\mathsf{G}) = \mathbf{a}$.

イロト イポト イラト イラト 一日

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$,

◆□> ◆圖> ◆国> ◆国>

3

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$, then

$$\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{\operatorname{diam}(\mathsf{G}) + 1}{2}.$$

ヘロン 人間 とくほど 人間 とう

3

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$, then

$$\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{\operatorname{diam}(\mathsf{G}) + 1}{2}.$$

• The lower bound is sharp for paths P_n , where $n \equiv 0 \pmod{4}$.

ヘロン 人間と 人間と 人間と

э

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$, then

$$\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{\operatorname{diam}(\mathsf{G}) + 1}{2}.$$

- The lower bound is sharp for paths P_n , where $n \equiv 0 \pmod{4}$.
- Theorem 11. If G is a connected graph of order n ≥ 2 with minimum degree at least 3 and diameter at least 3,

イロト イヨト イヨト イヨト

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$, then

$$\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{\operatorname{diam}(\mathsf{G}) + 1}{2}.$$

- The lower bound is sharp for paths P_n , where $n \equiv 0 \pmod{4}$.
- Theorem 11. If G is a connected graph of order $n \ge 2$ with minimum degree at least 3 and diameter at least 3, then

$$\gamma_{t}^{\mathsf{L}}(\mathsf{G}) \leq \mathsf{n} - \left\lceil rac{\operatorname{diam}(\mathsf{G})}{2}
ight
ceil,$$

イロト イヨト イヨト イヨト

General Bounds

• Theorem 10. If G is a connected graph of order $n \ge 2$, then

$$\gamma_t^{\mathsf{L}}(\mathsf{G}) \geq rac{\operatorname{diam}(\mathsf{G}) + 1}{2}.$$

- The lower bound is sharp for paths P_n , where $n \equiv 0 \pmod{4}$.
- Theorem 11. If G is a connected graph of order $n \ge 2$ with minimum degree at least 3 and diameter at least 3, then

$$\gamma_{t}^{\mathsf{L}}(\mathsf{G}) \leq \mathsf{n} - \left\lceil rac{\operatorname{diam}(\mathsf{G})}{2}
ight
ceil,$$

and the bound is asymptotically best possible.

A (10) A (10)

Locating-Total Domination in Cubic Graphs

• Let \mathcal{G}_n denote the family of all connected cubic graphs of order n,

イロト イヨト イヨト イヨト

Locating-Total Domination in Cubic Graphs

• Let \mathcal{G}_n denote the family of all connected cubic graphs of order n, and let

$$\xi(\mathbf{n}) = \max\left\{rac{\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G})}{\gamma_{\mathbf{t}}(\mathbf{G})}
ight\},$$

(本間) (本語) (本語)

Locating-Total Domination in Cubic Graphs

• Let \mathcal{G}_n denote the family of all connected cubic graphs of order n, and let

$$\xi(\mathbf{n}) = \max\left\{rac{\gamma_{\mathbf{t}}^{\mathbf{L}}(\mathbf{G})}{\gamma_{\mathbf{t}}(\mathbf{G})}
ight\},$$

where the maximum is taken over all graphs $G \in \mathcal{G}_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

• Let \mathcal{G}_n denote the family of all connected cubic graphs of order n, and let

$$\xi(\mathbf{n}) = \max\left\{rac{\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G})}{\gamma_{\mathbf{t}}(\mathbf{G})}
ight\},$$

where the maximum is taken over all graphs $G \in \mathcal{G}_n$.

• For example, $\xi(4) = 3/2$ and $\xi(6) = 2$.

(日本) (日本) (日本)

Locating-Total Domination in Cubic Graphs

• For $k \ge 2$, let N_k be the cubic graph obtained from a cycle C_k by replacing every vertex with a diamond.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- For $k \ge 2$, let N_k be the cubic graph obtained from a cycle C_k by replacing every vertex with a diamond.
- We call N_k a diamond-necklace with k diamonds,

・ 同 ト ・ ヨ ト ・ ヨ ト
Locating-Total Domination in Cubic Graphs

- For $k \ge 2$, let N_k be the cubic graph obtained from a cycle C_k by replacing every vertex with a diamond.
- \bullet We call N_k a diamond-necklace with k diamonds, and we let

 $\mathcal{N}_{\rm cubic} = \{ N_k \mid k \geq 2 \}.$

(人間) システン イラン

Locating-Total Domination in Cubic Graphs

• If $G \in \mathcal{N}_{\mathrm{cubic}}$ has order n,

伺い イヨト イヨト

Locating-Total Domination in Cubic Graphs

• If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order \mathbf{n} , then $\gamma_{\mathbf{t}}^{\mathbf{L}}(\mathbf{G}) = \mathbf{n}/2$.

Locating-Total Domination in Cubic Graphs

- If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order \mathbf{n} , then $\gamma_{\mathbf{t}}^{\mathbf{L}}(\mathbf{G}) = \mathbf{n}/2$.
- For $n \equiv 0 \pmod{16}$,

Locating-Total Domination in Cubic Graphs

- If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order \mathbf{n} , then $\gamma_{\mathbf{t}}^{\mathbf{L}}(\mathbf{G}) = \mathbf{n}/2$.
- For $\mathbf{n} \equiv \mathbf{0} \pmod{16}$, we have $\gamma_t(\mathbf{G}) = \mathbf{3n/8}$,

Locating-Total Domination in Cubic Graphs

• If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order **n**, then $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) = \mathbf{n}/2$.

• For $n \equiv 0 \pmod{16}$, we have $\gamma_t(G) = 3n/8$, and so

 $\xi(\mathbf{n}) \geq \frac{4}{3}.$

Locating-Total Domination in Cubic Graphs

• If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order \mathbf{n} , then $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) = \mathbf{n}/2$.

• For $n \equiv 0 \pmod{16}$, we have $\gamma_t(G) = 3n/8$, and so

 $\xi(\mathbf{n}) \geq \frac{4}{3}.$

• Conjecture 2. For n sufficiently large,

伺い イヨト イヨト

Locating-Total Domination in Cubic Graphs

• If $\mathbf{G} \in \mathcal{N}_{\text{cubic}}$ has order \mathbf{n} , then $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) = \mathbf{n}/2$.

• For $n \equiv 0 \pmod{16}$, we have $\gamma_t(G) = 3n/8$, and so

 $\xi(\mathbf{n})\geq \frac{\mathbf{4}}{\mathbf{3}}.$

• Conjecture 2. For n sufficiently large, we have

 $\xi(\mathbf{n}) \leq \frac{4}{3}.$

Total Domination in Cubic Graphs

 Archdeacon, Ellis-Monaghan, Fischer, Froncek, Lam, Seager, Wei, and Yuster (Some remarks on domination. J. Graph Theory 46 (2004), 207–210.)

高 とう モン・ く ヨ と

Total Domination in Cubic Graphs

- Archdeacon, Ellis-Monaghan, Fischer, Froncek, Lam, Seager, Wei, and Yuster (Some remarks on domination. J. Graph Theory 46 (2004), 207–210.)
- Theorem 12. If **G** is a graph of order **n** with $\delta(\mathbf{G}) \geq \mathbf{3}$, then

 $\gamma_t(G) \leq \frac{n}{2}.$

Total Domination in Cubic Graphs

- Archdeacon, Ellis-Monaghan, Fischer, Froncek, Lam, Seager, Wei, and Yuster (Some remarks on domination. *J. Graph Theory* **46** (2004), 207–210.)
- Theorem 12. If **G** is a graph of order **n** with $\delta(\mathbf{G}) \geq \mathbf{3}$, then

$$\gamma_{\mathbf{t}}(\mathbf{G}) \leq \frac{\mathbf{n}}{2}.$$

• What are the **extremal graphs**?

高 とう モン・ く ヨ と

• MAH, A. Yeo, J. Graph Theory 59 (2008), 326-348.

・ロン ・回 と ・ ヨ と ・ ヨ と

- MAH, A. Yeo, J. Graph Theory 59 (2008), 326–348.
- Theorem 13. If G is a graph of order **n** with $\delta(G) \ge 3$, then

 $\gamma_{\mathbf{t}}(\mathbf{G}) = \frac{\mathbf{n}}{2}$

if and only if

イロン イヨン イヨン イヨン

- MAH, A. Yeo, J. Graph Theory 59 (2008), 326–348.
- Theorem 13. If **G** is a graph of order **n** with $\delta(\mathbf{G}) \geq \mathbf{3}$, then

 $\gamma_{t}(\mathbf{G}) = \frac{\mathbf{n}}{2}$

if and only if
G is the generalized Petersen graph G₁₆ of order 16 or

イロト イポト イヨト イヨト

- MAH, A. Yeo, J. Graph Theory 59 (2008), 326–348.
- Theorem 13. If **G** is a graph of order **n** with $\delta(\mathbf{G}) \geq \mathbf{3}$, then

 $\gamma_{\mathbf{t}}(\mathbf{G}) = \frac{\mathbf{n}}{2}$

if and only if • **G** is the **generalized Petersen graph G**₁₆ of order 16 or • **G** $\in \mathcal{F}_1 \cup \mathcal{F}_2$.

イロン イ団ン イヨン イヨン 三日

The generalized Petersen graph G_{16} with $\gamma_t(G_{16}) = 8$.

・ロン ・聞 と ・ 聞 と ・ 聞 と

A family \mathcal{F}_1 of cubic graphs **G** of order **n** with $\gamma_t(\mathbf{G}) = \frac{n}{2}.$

・ロン ・聞と ・ほと ・ほと

A family \mathcal{F}_2 of **cubic graphs G** of order **n** with $\gamma_t(\mathbf{G}) = \frac{\mathbf{n}}{2}.$

イロト イヨト イヨト イヨト

Locating-Total Domination in Cubic Graphs

• The extremal graphs of Theorem 12,

<回> < 国> < 国> < 国>

Locating-Total Domination in Cubic Graphs

• The extremal graphs of Theorem 12, namely the **generalized** Petersen graph G_{16} and graphs in the family $\mathcal{F}_1 \cup \mathcal{F}_2$,

Locating-Total Domination in Cubic Graphs

• The extremal graphs of Theorem 12, namely the **generalized** Petersen graph G_{16} and graphs in the family $\mathcal{F}_1 \cup \mathcal{F}_2$, satisfy

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) = \gamma_{\mathbf{t}}(\mathbf{G}).$

Locating-Total Domination in Cubic Graphs

• The extremal graphs of Theorem 12, namely the **generalized** Petersen graph G_{16} and graphs in the family $\mathcal{F}_1 \cup \mathcal{F}_2$, satisfy

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) = \gamma_{\mathbf{t}}(\mathbf{G}).$

 In general, the locating-total domination number of a cubic graph can be very much larger than its total domination number

Locating-Total Domination in Cubic Graphs

• Conjecture 3.

ヘロン 人間と 人間と 人間と

Locating-Total Domination in Cubic Graphs

• Conjecture 3. If $G \notin \{K_4, K_{3,3}\}$ is a connected cubic graph of order n, then

・日・ ・ ヨ ・ ・ ヨ ・ ・

Locating-Total Domination in Cubic Graphs

• Conjecture 3. If $G \notin \{K_4, K_{3,3}\}$ is a connected cubic graph of order n, then

 $\gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) \leq \frac{\mathsf{n}}{2}.$

(4回) (4回) (日)

Locating-Total Domination in Claw-Free Cubic Graphs

F3

The family $\mathcal{F}_{cubic} = \{F_1, F_2, F_3, F_4, F_5\}.$

Locating- and Distinguishing-Total Domination in Graphs

- 4 回 ト 4 ヨ ト 4 ヨ ト

Locating-Total Domination in Claw-Free Cubic Graphs

The family $\mathcal{F}_{cubic} = \{F_1, F_2, F_3, F_4, F_5\}.$

Locating- and Distinguishing-Total Domination in Graphs

- 4 回 ト 4 ヨ ト 4 ヨ ト

Locating-Total Domination in Claw-Free Cubic Graphs

Recall that N_k is a **diamond-necklace** with k diamonds,

Locating-Total Domination in Claw-Free Cubic Graphs

 $\label{eq:kappa} \begin{array}{l} \mbox{Recall that N_k is a $diamond-necklace$ with k diamonds, and $\mathcal{N}_{\rm cubic} = \{N_k \mid k \geq 2\}. \end{array}$

(1日) (日) (日)

э

Locating-Total Domination in Claw-Free Cubic Graphs

 $\label{eq:kappa} \begin{array}{l} \mbox{Recall that N_k is a $diamond-necklace$ with k diamonds, and $\mathcal{N}_{\rm cubic} = \{N_k \mid k \geq 2\}. \end{array}$

A diamond-necklace N₈ with eight diamonds.

Michael A. Henning

Locating- and Distinguishing-Total Domination in Graphs

- 4 同 6 4 日 6 4 日 6

Locating-Total Domination in Claw-Free Cubic Graphs

 $\label{eq:kappa} \begin{array}{l} \mbox{Recall that N_k is a $diamond-necklace$ with k diamonds, and $\mathcal{N}_{\rm cubic} = \{N_k \mid k \geq 2\}. \end{array}$

A diamond-necklace N₈ with eight diamonds.

Michael A. Henning

Locating- and Distinguishing-Total Domination in Graphs

- 4 同 6 4 日 6 4 日 6

Locating-Total Domination in Cubic Graphs

• MAH and C. Löwenstein (2011):

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Locating-Total Domination in Cubic Graphs

- MAH and C. Löwenstein (2011):
- Theorem 14.

・ロン ・回 と ・ヨン ・ヨン

Locating-Total Domination in Cubic Graphs

- MAH and C. Löwenstein (2011):
- Theorem 14. If $G \neq K_4$ is a connected cubic claw-free graph of order n, then

・ 回 と ・ ヨ と ・ ヨ と

Locating-Total Domination in Cubic Graphs

- MAH and C. Löwenstein (2011):
- Theorem 14. If $G \neq K_4$ is a connected cubic claw-free graph of order n, then

 $\gamma_{\mathsf{t}}^{\mathsf{L}}(\mathsf{G}) \leq \frac{\mathsf{n}}{2},$

(1日) (日) (日)
Locating-Total Domination in Cubic Graphs

- MAH and C. Löwenstein (2011):
- Theorem 14. If $G \neq K_4$ is a connected cubic claw-free graph of order n, then

 $\gamma_{\mathsf{t}}^{\mathsf{L}}(\mathsf{G}) \leq \frac{\mathsf{n}}{2},$

with equality if and only if $G \in \mathcal{N}_{cubic} \cup \mathcal{F}_{cubic}$.

イロト 不得 トイヨト イヨト

Locating-Total Domination in Cubic Graphs

• For $k\geq 1,$ a diamond-bracelet B_k with k diamonds is obtained from a diamond-necklace N_{k+1} by replacing one of the diamonds with a triangle.

Locating-Total Domination in Cubic Graphs

• For $k\geq 1,$ a diamond-bracelet B_k with k diamonds is obtained from a diamond-necklace N_{k+1} by replacing one of the diamonds with a triangle.

A diamond-bracelet B7.

Locating-Total Domination in Cubic Graphs

• For $k \ge 1$, a diamond-chain L_k with k diamonds is obtained from a diamond-necklace N_{k+1} by deleting one of the diamonds and adding two triangles.

Locating-Total Domination in Cubic Graphs

• For $k \ge 1$, a diamond-chain L_k with k diamonds is obtained from a diamond-necklace N_{k+1} by deleting one of the diamonds and adding two triangles.

A diamond-chain.

Locating- and Distinguishing-Total Domination in Graphs

Locating-Total Domination in Cubic Graphs

• Sketch of Proof of Theorem 14.

<回> < 国> < 国> < 国>

Locating-Total Domination in Cubic Graphs

- Sketch of Proof of Theorem 14.
- By induction on the order n of a connected cubic claw-free graph different from K₄.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- Sketch of Proof of Theorem 14.
- By induction on the order n of a connected cubic claw-free graph different from K₄.
- The bases cases are trivial.

< 同 > < 三 > < 三 >

Locating-Total Domination in Cubic Graphs

- Sketch of Proof of Theorem 14.
- By induction on the order n of a connected cubic claw-free graph different from K₄.
- The bases cases are trivial. Let $n \ge 8$ and assume the result holds for all connected cubic claw-free graphs of order less than n that are different from K_4 .

伺下 イヨト イヨト

Locating-Total Domination in Cubic Graphs

- Sketch of Proof of Theorem 14.
- By induction on the order n of a connected cubic claw-free graph different from K₄.
- The bases cases are trivial. Let $n \ge 8$ and assume the result holds for all connected cubic claw-free graphs of order less than n that are different from K_4 .
- Let G = (V, E) be a connected cubic claw-free graph of order n.

▲圖> ▲屋> ▲屋>

Locating-Total Domination in Cubic Graphs

• The vertex set V can be **uniquely partitioned** into sets each of which induce a **triangle** or a **diamond** in G.

伺 ト イヨト イヨ

Locating-Total Domination in Cubic Graphs

- The vertex set V can be **uniquely partitioned** into sets each of which induce a **triangle** or a **diamond** in G.
- We refer to such a partition as a triangle-diamond partition of G, abbreviated Δ-D-partition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- The vertex set **V** can be **uniquely partitioned** into sets each of which induce a **triangle** or a **diamond** in **G**.
- We refer to such a partition as a triangle-diamond partition of G, abbreviated Δ-D-partition.
- Every triangle and diamond induced by a set in our
 Δ-D-partition we call a unit of the partition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- The vertex set V can be uniquely partitioned into sets each of which induce a triangle or a diamond in G.
- We refer to such a partition as a triangle-diamond partition of G, abbreviated Δ-D-partition.
- Every triangle and diamond induced by a set in our
 Δ-D-partition we call a unit of the partition.
- A unit that is a triangle we call a **triangle-unit** and a unit that is a diamond we call a **diamond-unit**.

イロト イポト イヨト イヨト

Locating-Total Domination in Cubic Graphs

- The vertex set V can be uniquely partitioned into sets each of which induce a triangle or a diamond in G.
- We refer to such a partition as a triangle-diamond partition of G, abbreviated Δ-D-partition.
- Every triangle and diamond induced by a set in our
 Δ-D-partition we call a unit of the partition.
- A unit that is a triangle we call a **triangle-unit** and a unit that is a diamond we call a **diamond-unit**.
- Two units are **adjacent** if there is an edge joining a vertex in one unit to a vertex in the other unit.

イロト イポト イヨト イヨト

Locating-Total Domination in Cubic Graphs

• If every unit in the Δ -D-partition is a diamond-unit, then $G \in \mathcal{N}_{cubic}$, and we are done.

<回と < 回と < 回と

Locating-Total Domination in Cubic Graphs

- If every unit in the Δ -D-partition is a diamond-unit, then $G \in \mathcal{N}_{cubic}$, and we are done.
- Hence we may assume we have at least two triangle-units.

高 とう モン・ く ヨ と

Locating-Total Domination in Cubic Graphs

- If every unit in the Δ -D-partition is a diamond-unit, then $G \in \mathcal{N}_{cubic}$, and we are done.
- Hence we may assume we have at least two triangle-units.
- If **G** contains a diamond-bracelet B_k , where $k \ge 1$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- If every unit in the Δ -D-partition is a diamond-unit, then $G \in \mathcal{N}_{cubic}$, and we are done.
- Hence we may assume we have at least two triangle-units.
- If **G** contains a diamond-bracelet B_k , where $k \ge 1$, then we show that either $G \in \{F_3, F_5\} \subset \mathcal{F}_{cubic}$ or $\gamma_t^L(G) < n/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Locating-Total Domination in Claw-Free Cubic Graphs

Locating-Total Domination in Claw-Free Cubic Graphs

Locating-Total Domination in Cubic Graphs

• Hence we may assume that **G** does **not** contain a **diamond-bracelet**.

・回 と く ヨ と く ヨ と

Locating-Total Domination in Cubic Graphs

- Hence we may assume that **G** does **not** contain a **diamond-bracelet**.
- We now construct a multigraph M, called the contraction-multigraph of G, as follows.

高 とう モン・ く ヨ と

Locating-Total Domination in Cubic Graphs

- Hence we may assume that **G** does **not** contain a **diamond-bracelet**.
- We now construct a **multigraph M**, called the **contraction-multigraph** of **G**, as follows.
- For each triangle-unit in G, we associate a vertex of M.

向下 イヨト イヨト

Locating-Total Domination in Cubic Graphs

 If two triangle-units in G are joined by i edges, then we add i edges joining the vertices in M corresponding to these two triangle-units.

(日本) (日本) (日本)

Locating-Total Domination in Cubic Graphs

- If two triangle-units in G are joined by i edges, then we add i edges joining the vertices in M corresponding to these two triangle-units.
- Further if two triangle-units in G are joined to j common diamond-chains, then we add j edges joining the vertices in M corresponding to these two triangle-units.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- If two triangle-units in G are joined by i edges, then we add i edges joining the vertices in M corresponding to these two triangle-units.
- Further if two triangle-units in G are joined to j common diamond-chains, then we add j edges joining the vertices in M corresponding to these two triangle-units.
- Then M is a cubic multigraph, possibly with multiple edges.

Locating-Total Domination in Cubic Graphs

- If two triangle-units in G are joined by i edges, then we add i edges joining the vertices in M corresponding to these two triangle-units.
- Further if two triangle-units in G are joined to j common diamond-chains, then we add j edges joining the vertices in M corresponding to these two triangle-units.
- Then M is a cubic multigraph, possibly with multiple edges.
- Since G contains no diamond-bracelet, M is loop-free.

イロン イヨン イヨン イヨン

Locating-Total Domination in Cubic Graphs

 If M has a maximal independent set I, such that there is a vertex in M that is joined with exactly two edges to vertices in I,

・ 同 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

• If M has a maximal independent set I, such that there is a vertex in M that is joined with exactly two edges to vertices in I, then we show that $\gamma_t^{L}(G) < n/2$.

高 とう モン・ く ヨ と

Locating-Total Domination in Cubic Graphs

- If M has a maximal independent set I, such that there is a vertex in M that is joined with exactly two edges to vertices in I, then we show that $\gamma_t^L(G) < n/2$.
- Hence we may assume there is no such maximal independent set I in M.

高 とう モン・ く ヨ と

Locating-Total Domination in Cubic Graphs

• We show then that $M \in \mathcal{M} = \{M_1, M_2, M_3, M_4, M_5\}$.

・ロン ・回 と ・ 回 と ・ 日 と

Locating-Total Domination in Cubic Graphs

• We show then that $M \in \mathcal{M} = \{M_1, M_2, M_3, M_4, M_5\}$.

・ロン ・回 と ・ 回 と ・ 日 と

Locating-Total Domination in Cubic Graphs

• We show then that $\mathbf{M} \in \mathcal{M} = {\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4, \mathbf{M}_5}.$

イロン イヨン イヨン イヨン

Locating-Total Domination in Cubic Graphs

We show then that if the △-D-partition contains a diamond-unit,

伺い イヨト イヨト

Locating-Total Domination in Cubic Graphs

We show then that if the Δ-D-partition contains a diamond-unit, then γ^L_t(G) < n/2.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Locating-Total Domination in Cubic Graphs

- We show then that if the Δ-D-partition contains a diamond-unit, then γ^L_t(G) < n/2.
- Hence we may assume that every unit in the Δ-D-partition is a triangle-unit.

・ 同 ト ・ ヨ ト ・ ヨ ト
Locating-Total Domination in Cubic Graphs

• If $M = M_1$,

Locating-Total Domination in Cubic Graphs

• If $M = M_1$, then $G = F_1$.

Locating-Total Domination in Cubic Graphs

```
• If M = M_1, then G = F_1.
```


Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs

Locating-Total Domination in Cubic Graphs

• If $M = M_2$,

・ロン ・聞と ・ほと ・ほと

3

Locating-Total Domination in Cubic Graphs

• If $M = M_2$, then $G = F_2$.

ヘロン 人間と 人間と 人間と

3

Locating-Total Domination in Cubic Graphs

• If $M = M_2$, then $G = F_2$.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Locating-Total Domination in Cubic Graphs

• If $M = M_3$,

ヘロン 人間 とくほど 人間 とう

3

Locating-Total Domination in Cubic Graphs

• If $M = M_3$, then $G = F_4$.

イロン イヨン イヨン イヨン

→ 同 → → 目 → → 目 →

Locating-Total Domination in Cubic Graphs

• If $M = M_4$,

・ロン ・聞と ・ほと ・ほと

3

Locating-Total Domination in Cubic Graphs

• If $M = M_4$, then n = 18 and $\gamma_t^{\mathsf{L}}(\mathsf{G}) \le 8 < n/2$.

Locating-Total Domination in Cubic Graphs

• If $M = M_4$, then n = 18 and $\gamma_t^{\mathsf{L}}(\mathsf{G}) \leq 8 < n/2$.

・日・ ・ヨ・ ・ヨ・

Locating-Total Domination in Cubic Graphs

• If $M = M_5$,

- 4 回 2 - 4 □ 2 - 4 □

Locating-Total Domination in Cubic Graphs

• If $M = M_5$, then n = 24 and $\gamma_t^L(G) \le 11 < n/2$.

(4 同) (4 回) (4 回)

Locating-Total Domination in Cubic Graphs

• If $M = M_5$, then n = 24 and $\gamma_t^L(G) \le 11 < n/2$.

通 と く ヨ と く ヨ と

Distinguishing-Total Domination in Graphs

• Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set $S \subseteq V$ is a distinguishing-total dominating set

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code),

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set,

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set with the property that distinct vertices in V are totally dominated by distinct subsets of S.

回 と く ヨ と く ヨ と

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set with the property that distinct vertices in V are totally dominated by distinct subsets of S.
- Hence, S is a DTD-set of G if

高 とう モン・ く ヨ と

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set with the property that distinct vertices in V are totally dominated by distinct subsets of S.
- Hence, S is a DTD-set of G if S is a TD-set of G

伺 ト イヨト イヨト

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set with the property that distinct vertices in V are totally dominated by distinct subsets of S.
- Hence, S is a DTD-set of G if S is a TD-set of G such that for distinct vertices u, v ∈ V,

Distinguishing-Total Domination in Graphs

- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph without isolated vertices.
- A set S ⊆ V is a distinguishing-total dominating set (or identifying open code), abbreviated DTD-set, of G if S is a TD-set with the property that distinct vertices in V are totally dominated by distinct subsets of S.
- Hence, S is a DTD-set of G if S is a TD-set of G such that for distinct vertices u, v ∈ V,

 $N(u) \cap S \neq N(v) \cap S.$

Distinguishing-Total Domination in Graphs

• A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.

向下 イヨト イヨト

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.

向下 イヨト イヨト

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.
- The distinguishing-total domination number, denoted $\gamma_{\rm t}^{\rm D}({\bf G})$

高 とう モン・ く ヨ と

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.
- The distinguishing-total domination number, denoted $\gamma_t^{\rm D}({\bf G})$ (or $\gamma^{\rm IOC}({\bf G})$),

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.
- The distinguishing-total domination number, denoted $\gamma_t^{D}(G)$ (or $\gamma^{IOC}(G)$), of a twin-free G is the minimum cardinality of a DTD-set of G.

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.
- The distinguishing-total domination number, denoted $\gamma_t^{D}(G)$ (or $\gamma^{IOC}(G)$), of a twin-free G is the minimum cardinality of a DTD-set of G.
- If G is twin-free, then

Distinguishing-Total Domination in Graphs

- A graph is **twin-free** (or **open identifiable**) if every two distinct vertices have **distinct open neighborhoods**.
- A graph has a **DTD-set** if and only if it is twin-free.
- The distinguishing-total domination number, denoted $\gamma_t^{D}(G)$ (or $\gamma^{IOC}(G)$), of a twin-free G is the minimum cardinality of a DTD-set of G.
- If G is twin-free, then

 $\gamma_{\mathbf{t}}(\mathbf{G}) \leq \gamma_{\mathbf{t}}^{\mathsf{L}}(\mathbf{G}) \leq \gamma_{\mathbf{t}}^{\mathsf{D}}(\mathbf{G}).$

Distinguishing-Total Domination in Cubic Graphs

• Let **G** be a **connected cubic graph** of order **n** that is twin-free.

<回> < 回> < 回> < 回> :

Distinguishing-Total Domination in Cubic Graphs

- Let **G** be a **connected cubic graph** of order **n** that is twin-free.
- **Problem.** Find an upper bound on $\gamma_t^{\mathsf{D}}(\mathsf{G})$ in terms of **n**.

(1日) (1日) (1日)

Distinguishing-Total Domination in Cubic Graphs

• Consider the hypercube Q₃:

Distinguishing-Total Domination in Cubic Graphs

• Consider the hypercube Q₃:

向下 イヨト イヨト

回 と く ヨ と く ヨ と

Distinguishing-Total Domination in Cubic Graphs

For an even number n ≥ 4, the Möbius ladder M_n is a cubic circulant graph on n vertices, formed from an n-cycle by adding edges connecting opposite pairs of vertices in the cycle.

向下 イヨト イヨト

Distinguishing-Total Domination in Cubic Graphs

For an even number n ≥ 4, the Möbius ladder M_n is a cubic circulant graph on n vertices, formed from an n-cycle by adding edges connecting opposite pairs of vertices in the cycle.

Two views of the Möbius ladder M_{14} .

Locating- and Distinguishing-Total Domination in Graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

Distinguishing-Total Domination in Cubic Graphs

For an even number n ≥ 4, the Möbius ladder M_n is a cubic circulant graph on n vertices, formed from an n-cycle by adding edges connecting opposite pairs of vertices in the cycle.

イロト イポト イヨト イヨト

Distinguishing-Total Domination in Cubic Graphs

• Let **G** be a **connected cubic graph** of order **n** that is twin-free.

・ 同 ト ・ ヨ ト ・ ヨ ト

Distinguishing-Total Domination in Cubic Graphs

- Let **G** be a **connected cubic graph** of order **n** that is twin-free.
- **Problem.** Find an upper bound on $\gamma_t^{D}(G)$ in terms of **n**.

(人間) とうり くうり

• Hypergraphs are systems of sets which are conceived as natural extensions of graphs:

- Hypergraphs are systems of sets which are conceived as natural extensions of graphs:
- A hypergraph H = (V, E) is a finite set V of elements, called vertices, together with a finite multiset E of arbitrary subsets of V, called edges.

- Hypergraphs are systems of sets which are conceived as natural extensions of graphs:
- A hypergraph H = (V, E) is a finite set V of elements, called vertices, together with a finite multiset E of arbitrary subsets of V, called edges.
- A hypergraph is *k*-uniform if every edge has size **k**.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Hypergraphs are systems of sets which are conceived as natural extensions of graphs:
- A hypergraph H = (V, E) is a finite set V of elements, called vertices, together with a finite multiset E of arbitrary subsets of V, called edges.
- A hypergraph is *k*-uniform if every edge has size **k**.
- Every (simple) graph is a 2-uniform hypergraph.

イロン イヨン イヨン イヨン

• A transversal in a hypergraph **H** is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of **H**).

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.
- We call a hypergraph H identifiable if every two edges in H are distinct.

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.
- We call a hypergraph H identifiable if every two edges in H are distinct.
- A distinguishing transversal in an identifiable hypergraph H is a transversal T that distinguishes the edges,

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.
- We call a hypergraph H identifiable if every two edges in H are distinct.
- A distinguishing transversal in an identifiable hypergraph H is a transversal T that distinguishes the edges, i.e., for distinct edges e and f, we have

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.
- We call a hypergraph H identifiable if every two edges in H are distinct.
- A distinguishing transversal in an identifiable hypergraph H is a transversal T that distinguishes the edges, i.e., for distinct edges e and f, we have

$e\cap T\neq f\cap T.$

- A transversal in a hypergraph H is a set of vertices that meets every edge (i.e., has a nonempty intersection with every edge of H).
- The transversal number $\tau(H)$ of H is the minimum number of vertices meeting every edge.
- We call a hypergraph H identifiable if every two edges in H are distinct.
- A distinguishing transversal in an identifiable hypergraph H is a transversal T that distinguishes the edges, i.e., for distinct edges e and f, we have

$e\cap T\neq f\cap T.$

• Let $\mathbf{H} = (\mathbf{V}, \mathbf{E})$ be the hypergraph with $\mathbf{V} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$ and $\mathbf{E} = \{\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}, \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}, \{\mathbf{u}, \mathbf{x}, \mathbf{y}\}\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆目 ● のへで

• Let $\mathbf{H} = (\mathbf{V}, \mathbf{E})$ be the hypergraph with $\mathbf{V} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$ and $\mathbf{E} = \{\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}, \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}, \{\mathbf{u}, \mathbf{x}, \mathbf{y}\}\}.$

・ 国 ト ・ 国 ト ・ 国 ト … 国

• Let $\mathbf{H} = (\mathbf{V}, \mathbf{E})$ be the hypergraph with $\mathbf{V} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$ and $\mathbf{E} = \{\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}, \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}, \{\mathbf{u}, \mathbf{x}, \mathbf{y}\}\}.$

伺 と く き と く き と

The set $T = \{u, v\}$ is a distinguishing transversal in H.

• Let $\mathbf{H} = (\mathbf{V}, \mathbf{E})$ be the hypergraph with $\mathbf{V} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$ and $\mathbf{E} = \{\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}, \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}, \{\mathbf{u}, \mathbf{x}, \mathbf{y}\}\}.$

高 とう ヨン ういてい

The set $T = \{u, v\}$ is a distinguishing transversal in H.

• For a graph **G** = (**V**, **E**), we denote by **ONH(G)** the **open neighborhood hypergraph** of **G**.

(4回) (4回) (日)

- For a graph G = (V, E), we denote by ONH(G) the open neighborhood hypergraph of G.
- Hence, ONH(G)= (V, C) is the hypergraph with vertex set V and with edge set

- For a graph G = (V, E), we denote by ONH(G) the open neighborhood hypergraph of G.
- Hence, ONH(G)= (V, C) is the hypergraph with vertex set V and with edge set

 $\textbf{C} = \{\textbf{N}_{\textbf{G}}(\textbf{x}) \mid \textbf{x} \in \textbf{V}(\textbf{G})\},$

・ 同 ト ・ ヨ ト ・ ヨ ト

- For a graph G = (V, E), we denote by ONH(G) the open neighborhood hypergraph of G.
- Hence, ONH(G)= (V, C) is the hypergraph with vertex set V and with edge set

 $\textbf{C} = \{\textbf{N}_{\textbf{G}}(\textbf{x}) \mid \textbf{x} \in \textbf{V}(\textbf{G})\},$

consisting of the open neighborhoods of vertices in G.

• What is the **open neighborhood hypergraph ONH(G)** of the graph **G** shown below?

ヘロン 人間と 人間と 人間と

G

• What is the **open neighborhood hypergraph ONH(G)** of the graph **G** shown below?

回 と く ヨ と く ヨ と

æ

イロト イヨト イヨト イヨト

æ

ONH(G).

(ロ) (同) (E) (E) (E)

 $\tau_{\mathsf{D}}(\mathsf{ONH}(\mathsf{G})) = \mathbf{8}.$

イロン イ部 とくほど くほとう ほ

 $\tau_{\mathsf{D}}(\mathsf{ONH}(\mathsf{G})) = \mathbf{8}.$

イロン イ部 とくほど くほど 二日

・ロン ・回 と ・ 回 と ・ 回 と

3

Key Observation.

For every graph G that is twin-free,

イロン イヨン イヨン イヨン

3

Key Observation.

For every graph G that is twin-free, we gave

 $\gamma_{\mathsf{t}}^{\mathsf{D}}(\mathsf{G}) = \tau_{\mathsf{D}}(\mathsf{ONH}(\mathsf{G})).$

イロン イ部ン イヨン イヨン 三日

• Thus

distinguishing-total domination in graphs

イロン イヨン イヨン イヨン
Open Neighborhood Hypergraph

Thus

distinguishing-total domination in graphs

can be translated to the problem of finding

イロト イヨト イヨト イヨト

Open Neighborhood Hypergraph

Thus

distinguishing-total domination in graphs

can be translated to the problem of finding

distinguishing-transversals in hypergraphs.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Open Neighborhood Hypergraph

Thus

distinguishing-total domination in graphs

can be translated to the problem of finding

distinguishing-transversals in hypergraphs.

• The main advantage of considering hypergraphs rather than graphs is that the structure is easier to handle.

- 4 同 ト 4 日 ト 4 日 ト

Distinguishing-Transversals in 2-Uniform Hypergraphs

• Every (simple) graph is a 2-uniform hypergraph.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Every (simple) graph is a 2-uniform hypergraph.
- Let G = (V, E) be a graph of order n and size m with maximum degree at most 3.

・ロン ・回 と ・ ヨ と ・ ヨ と

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Every (simple) graph is a 2-uniform hypergraph.
- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph of order **n** and size **m** with maximum degree at most **3**.
- Let $\mathbf{E} = (\mathbf{E}_2, \mathbf{F}_2)$ be a weak partition (a partition in which some of the sets may be empty) of \mathbf{E} .

・ロン ・回 と ・ ヨ と ・ ヨ と

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Every (simple) graph is a 2-uniform hypergraph.
- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph of order **n** and size **m** with maximum degree at most **3**.
- Let $\mathbf{E} = (\mathbf{E}_2, \mathbf{F}_2)$ be a weak partition (a partition in which some of the sets may be empty) of \mathbf{E} .
- Let ${\sf T}$ be a transversal in ${\sf G}$ such that the edges in ${\sf F}_2$ are distinguished.

・ロン ・回 と ・ヨン ・ヨン

э

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Every (simple) graph is a 2-uniform hypergraph.
- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph of order **n** and size **m** with maximum degree at most **3**.
- Let $\mathbf{E} = (\mathbf{E}_2, \mathbf{F}_2)$ be a weak partition (a partition in which some of the sets may be empty) of \mathbf{E} .
- Let ${\sf T}$ be a transversal in ${\sf G}$ such that the edges in ${\sf F}_2$ are distinguished.
- Theorem 15. There exists such a transversal T such that

Locating- and Distinguishing-Total Domination in Graphs

・ロン ・回 と ・ ヨ と ・ ヨ と

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Every (simple) graph is a 2-uniform hypergraph.
- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph of order **n** and size **m** with maximum degree at most **3**.
- Let $\mathbf{E} = (\mathbf{E}_2, \mathbf{F}_2)$ be a weak partition (a partition in which some of the sets may be empty) of \mathbf{E} .
- Let ${\sf T}$ be a transversal in ${\sf G}$ such that the edges in ${\sf F}_2$ are distinguished.
- Theorem 15. There exists such a transversal T such that

 $|10|\mathsf{T}| \le 6\mathsf{n} + 2|\mathsf{F}_2| + |\mathsf{E}_2|.$

・ロン ・回 と ・ヨン ・ヨン

э

Distinguishing-Transversals in 2-Uniform Hypergraphs

• Corollary 1. If G is a graph of order n and size m with maximum degree at most 3, then $5\tau_D(G) \leq 3n + m$.

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Corollary 1. If G is a graph of order n and size m with maximum degree at most 3, then $5\tau_D(G) \leq 3n + m$.
- Corollary 2. If G is a cubic graph of order n, then $\tau_D(G) \leq 9n/10$.

Distinguishing-Transversals in 2-Uniform Hypergraphs

- Corollary 1. If G is a graph of order n and size m with maximum degree at most 3, then $5\tau_D(G) \leq 3n + m$.
- Corollary 2. If G is a cubic graph of order n, then $\tau_D(G) \leq 9n/10$.

Distinguishing-Transversals in Hypergraphs of Rank 3

 Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.

伺 ト イミト イミト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $E = (E_2, E_3, F_2, F_3)$ be a weak partition of E,

向下 イヨト イヨト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $E = (E_2, E_3, F_2, F_3)$ be a weak partition of E, where $E_2 \cup F_2$ is the set of 2-edges in H

コット イロット イロッ

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $\mathbf{E} = (\mathbf{E}_2, \mathbf{E}_3, \mathbf{F}_2, \mathbf{F}_3)$ be a weak partition of \mathbf{E} , where $\mathbf{E}_2 \cup \mathbf{F}_2$ is the set of 2-edges in \mathbf{H} and $\mathbf{E}_3 \cup \mathbf{F}_3$ is the set of 3-edges in \mathbf{H} .

伺 ト イヨト イヨト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $E = (E_2, E_3, F_2, F_3)$ be a weak partition of E, where $E_2 \cup F_2$ is the set of 2-edges in H and $E_3 \cup F_3$ is the set of 3-edges in H.
- \bullet Let T be a transversal in H such that the edges in $F_2 \cup F_3$ are distinguished,

伺下 イヨト イヨト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $E = (E_2, E_3, F_2, F_3)$ be a weak partition of E, where $E_2 \cup F_2$ is the set of 2-edges in H and $E_3 \cup F_3$ is the set of 3-edges in H.
- Let T be a transversal in H such that the edges in $F_2 \cup F_3$ are distinguished, i.e., if $e, f \in F_2 \cup F_3$ and $e \neq f$,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let H = (V, E) be a hypergraph of rank 3 and order n with maximum degree at most 3.
- Let $E = (E_2, E_3, F_2, F_3)$ be a weak partition of E, where $E_2 \cup F_2$ is the set of 2-edges in H and $E_3 \cup F_3$ is the set of 3-edges in H.
- Let T be a transversal in H such that the edges in $F_2 \cup F_3$ are distinguished, i.e., if $e,f \in F_2 \cup F_3$ and $e \neq f$, then

 $e\cap T\neq f\cap T.$

Distinguishing-Transversals in Hypergraphs of Rank 3

• Let $X \subseteq V$ and let T be chosen so that $X \subseteq T$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Distinguishing-Transversals in Hypergraphs of Rank 3

Let X ⊆ V and let T be chosen so that X ⊆ T, i.e., X is an arbitrary subset of vertices, and T is forced to contain X.

向下 イヨト イヨト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let X ⊆ V and let T be chosen so that X ⊆ T, i.e., X is an arbitrary subset of vertices, and T is forced to contain X.
- Let F'₂ be the set of edges e ∈ F₂ such that both vertices in e have degree at most 2 in H.

向下 イヨト イヨト

Distinguishing-Transversals in Hypergraphs of Rank 3

- Let X ⊆ V and let T be chosen so that X ⊆ T, i.e., X is an arbitrary subset of vertices, and T is forced to contain X.
- Let F'₂ be the set of edges e ∈ F₂ such that both vertices in e have degree at most 2 in H.
- Let M be a maximum matching in the subgraph of H induced by the set of edges in F'_2 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Distinguishing-Transversals in Hypergraphs of Rank 3

• MAH and A. Yeo (2011).

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

 $20|\mathsf{T}| \leq 12n + 7|\mathsf{F}_2| + 3|\mathsf{F}_3| + 2|\mathsf{E}_2| - 5|\mathsf{M}| + 8|\mathsf{X}|.$

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

 $20|\mathsf{T}| \leq 12n + 7|\mathsf{F}_2| + 3|\mathsf{F}_3| + 2|\mathsf{E}_2| - 5|\mathsf{M}| + 8|\mathsf{X}|.$

• Corollary 3. If H is a 3-uniform identifiable hypergraph of order n and size m with maximum degree at most 3,

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

 $20|\mathsf{T}| \leq 12n + 7|\mathsf{F}_2| + 3|\mathsf{F}_3| + 2|\mathsf{E}_2| - 5|\mathsf{M}| + 8|\mathsf{X}|.$

• Corollary 3. If H is a 3-uniform identifiable hypergraph of order n and size m with maximum degree at most 3, then

$$au_{\mathsf{D}}(\mathsf{H}) \leq rac{3}{5}\mathsf{n} + rac{3}{20}\mathsf{m}.$$

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

 $20|\mathsf{T}| \leq 12n + 7|\mathsf{F}_2| + 3|\mathsf{F}_3| + 2|\mathsf{E}_2| - 5|\mathsf{M}| + 8|\mathsf{X}|.$

• Corollary 3. If H is a 3-uniform identifiable hypergraph of order n and size m with maximum degree at most 3, then

$$au_{\mathsf{D}}(\mathsf{H}) \leq rac{3}{5}\mathsf{n} + rac{3}{20}\mathsf{m}.$$

• Corollary 4. If G is twin-free cubic graph of order n, then

Distinguishing-Transversals in Hypergraphs of Rank 3

- MAH and A. Yeo (2011).
- Theorem 16. There exists such a transversal T satisfying

 $20|\mathsf{T}| \leq 12n + 7|\mathsf{F}_2| + 3|\mathsf{F}_3| + 2|\mathsf{E}_2| - 5|\mathsf{M}| + 8|\mathsf{X}|.$

• Corollary 3. If H is a 3-uniform identifiable hypergraph of order n and size m with maximum degree at most 3, then

$$au_{\mathsf{D}}(\mathsf{H}) \leq rac{3}{5}\mathsf{n} + rac{3}{20}\mathsf{m}.$$

• Corollary 4. If G is twin-free cubic graph of order n, then

$$\gamma_{\mathsf{t}}^{\mathsf{D}}(\mathsf{G}) \leq \frac{3}{4}\mathsf{n}.$$

Locating- and Distinguishing-Total Domination in Graphs

回 と く ヨ と く ヨ と

Distinguishing-Total Domination in Cubic Graphs

• Let $\mathcal{B} = \{Q_3, M_4, M_{14}, M_{18}, M_{22}, M_{26}\}$ be a forbidden family of six cubic graphs consisting of the hypercube Q_3 and five Möbius ladders of orders 4, 14, 18, 22 and 26, respectively.

伺 ト イヨト イヨト

Distinguishing-Total Domination in Cubic Graphs

- Let $\mathcal{B} = \{Q_3, M_4, M_{14}, M_{18}, M_{22}, M_{26}\}$ be a forbidden family of six cubic graphs consisting of the hypercube Q_3 and five Möbius ladders of orders 4, 14, 18, 22 and 26, respectively.
- Conjecture 4. If G ∉ B is connected twin-free cubic graph of order n, then

・ 同 ト ・ ヨ ト ・ ヨ ト

Distinguishing-Total Domination in Cubic Graphs

- Let $\mathcal{B} = \{Q_3, M_4, M_{14}, M_{18}, M_{22}, M_{26}\}$ be a forbidden family of six cubic graphs consisting of the hypercube Q_3 and five Möbius ladders of orders 4, 14, 18, 22 and 26, respectively.
- Conjecture 4. If G ∉ B is connected twin-free cubic graph of order n, then

 $\gamma^{\mathsf{D}}_{\mathsf{t}}(\mathsf{G}) \leq rac{3}{5}\mathsf{n}.$

(1日) (1日) (1日)

Distinguishing-Total Domination in Cubic Graphs

- Let $\mathcal{B} = \{Q_3, M_4, M_{14}, M_{18}, M_{22}, M_{26}\}$ be a forbidden family of six cubic graphs consisting of the hypercube Q_3 and five Möbius ladders of orders 4, 14, 18, 22 and 26, respectively.
- Conjecture 4. If G ∉ B is connected twin-free cubic graph of order n, then

 $\gamma_{\mathsf{t}}^{\mathsf{D}}(\mathsf{G}) \leq \frac{3}{5}\mathsf{n}.$

• If **Conjecture 4** is true, then this bound would be sharp.

ヘロン 人間と 人間と 人間と

Distinguishing-Total Domination in Cubic Graphs

 \bullet For $k\geq 1,$ let G_k be the graph of order 10k constructed as follows.

・ロン ・回 と ・ ヨ と ・ ヨ と

э
Distinguishing-Total Domination in Cubic Graphs

 \bullet For $k\geq 1,$ let G_k be the graph of order 10k constructed as follows. Let

 $V(G) = \{x_0, x_1, \dots, x_{5k-1}\} \cup \{y_0, y_1, \dots, y_{5k-1}\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

э

Distinguishing-Total Domination in Cubic Graphs

 \bullet For $k\geq 1,$ let G_k be the graph of order 10k constructed as follows. Let

$$V(G) = \{x_0, x_1, \dots, x_{5k-1}\} \cup \{y_0, y_1, \dots, y_{5k-1}\}.$$

• For every $i=0,1,2,\ldots,k-1$ add the following edges to $G_k,$ where the indices are taken modulo 5k.

・ロン ・回 と ・ ヨ と ・ ヨ と

Distinguishing-Total Domination in Cubic Graphs

 $\bullet \mbox{ For } k \geq 1,$ let G_k be the graph of order 10k constructed as follows. Let

$$V(G) = \{x_0, x_1, \dots, x_{5k-1}\} \cup \{y_0, y_1, \dots, y_{5k-1}\}.$$

- For every $i=0,1,2,\ldots,k-1$ add the following edges to $G_k,$ where the indices are taken modulo 5k.
- If $i \not\equiv 0 \pmod{5}$, join x_i to y_{i-1} , y_i and y_{i+1} .

・ロン ・回 と ・ ヨ と ・ ヨ と

э

Distinguishing-Total Domination in Cubic Graphs

 $\bullet \mbox{ For } k \geq 1,$ let G_k be the graph of order 10k constructed as follows. Let

$$V(G) = \{x_0, x_1, \dots, x_{5k-1}\} \cup \{y_0, y_1, \dots, y_{5k-1}\}.$$

- For every $i=0,1,2,\ldots,k-1$ add the following edges to $G_k,$ where the indices are taken modulo 5k.
- If $i \not\equiv 0 \pmod{5}$, join x_i to y_{i-1} , y_i and y_{i+1} .
- If $i \equiv 0 \pmod{5}$, join x_i to y_i , y_{i+1} and y_{i+4} .
- By construction, the graph G_k is a connected cubic graph that is twin-free.

・ロン ・回 と ・ ヨ と ・ ヨ と

э

The hypergraph

イロト イヨト イヨト イヨト

The hypergraph

Proposition. For $k \ge 1$, if G_k has order **n**, then

イロト イヨト イヨト イヨト

The hypergraph

Proposition. For $k \ge 1$, if G_k has order **n**, then $\gamma_t^D(G_k) = \frac{3}{5}n$.

イロト イヨト イヨト イヨト

THANK YOU FOR YOUR ATTENTION!

NGIYABONGA KAKHULU!

回 と く ヨ と く ヨ と