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Total Domination in Graphs

Total Domination in Graphs

Let G = (V,E) be a graph without isolated vertices.

A set S ⊆ V is a total dominating set, abbreviated TD-set,
of G if every vertex of G is adjacent to a vertex in S.

The total domination number γt(G) of G is the minimum
cardinality of a total dominating set.

Total domination in graphs was introduced by Cockayne,
Dawes, and Hedetniemi in 1980. (Total domination in
graphs. Networks 10 (1980), 211–219.)
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A graph G with γt(G) = 8.
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Locating-Total Domination in Graphs

Locating-Total Domination in Graphs

Let G = (V,E) be a graph without isolated vertices.

A set S ⊆ V is a locating-total dominating set, abbreviated
LTD-set, of G if S is a TD-set with the property that
distinct vertices in V \ S are totally dominated by distinct
subsets of S.

Hence, S is a LTD-set of G if S is a TD-set of G such that
for distinct vertices u, v ∈ V \ S,

N(u) ∩ S 6= N(v) ∩ S.
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Locating-Total Domination in Graphs

Every graph G with no isolated vertex has a LTD-set since
V is such a set.

The locating-total domination number γL
t (G) of G is the

minimum cardinality of a LTD-set.

The study of locating dominating sets in graphs was pioneered
by Peter Slater:

[1] Dominating and location in acyclic graphs. Networks 17
(1987), 55–64.

[2] Dominating and reference sets in graphs. J. Math. Phys.
Sci. 22 (1988), 445–455.
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Locating-Total Domination in Graphs

Locating-total dominating sets in graphs has been studied by
several authors, for example:

[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri,
Locating-domination and identifying codes in trees. Aust. J.
Combin. 39 (2007), 219–232.

[4] M. Blidia, O. Favaron and R. Lounes, Locating-domination,
2-domination and independence in trees. Aust. J. Combin. 42
(2008), 309–319.

[5] M. Chellali, On locating and differentiating-total domination in
trees. Discussiones Math. Graph Theory. 28(3) (2008), 383–392.

[6] M. Chellali and N. J. Rad, Locating-total domination critical
graphs. Aust. J. Combin. 45 (2009), 227–234.

[7] X. G. Chen and M. Y. Sohn, Bounds on the locating-total
domination number of a tree. Discrete Appl. Math. 159 (2011)
769–773.
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Locating-Total Domination in Graphs

In this talk, we will mention results from the following six papers,
especially two recent results from [9] and [13]:

[8] T. W. Haynes, MAH, and J. Howard, Locating and total
dominating sets in trees. Discrete Applied Math. 154 (2006),
1293–1300.

[9] MAH and C. Löwenstein, Locating-total domination in
claw-free cubic graphs, manuscript (2011+).

[10] MAH and J. McCoy, Locating and paired-dominating sets in
graphs. Discrete Applied Math. 157 (2009), 3268–3280.

[11] MAH and J. McCoy, Which trees have a differentiating-paired
dominating set? J. Combin. Optim. 22 (2011), 1–18.

[12] MAH and N. Rad, Locating-total domination in graphs,
manuscript (2011+).

[13] MAH, and A. Yeo, Distinguishing-total dominating sets in
cubic graphs, manuscript (2011+).
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Locating-Total Domination in Graphs

Observations

Every LTD-set of a graph is also a TD-set of the graph.

Observation 1. γt(G) ≤ γL
t (G) for every graph G.

Observation 2. Let S be a LTD-set in a graph G and let X ⊆ V.
(a) If N[u] = N[v] for every pair u, v ∈ X, then |S ∩ X| ≥ |X| − 1.
(b) If N(u) = N(v) for every pair u, v ∈ X, then |S ∩ X| ≥ |X| − 1.
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Locating-Total Domination in Graphs

Observations

Observation 3. For n ≥ 2,
γL

t (Pn) = γt(Pn) = bn/2c+ dn/4e − bn/4c.

Observation 4. For n ≥ 3,
γL

t (Cn) = γt(Cn) = bn/2c+ dn/4e − bn/4c.

Observation 5. For n ≥ 2, γL
t (K1,n) = n.

Observation 6. For m ≥ n ≥ 2, γL
t (Km,n) = m + n− 2.

Observation 7. For n ≥ 2, γL
t (Kn) = n− 1.
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Locating-Total Domination in Trees

Locating-Total Domination in Trees

Haynes, MAH, and J. Howard (2006).

Let T ∈ T1 be the family of trees that can be obtained from
k disjoint copies of P4

by first adding k− 1 edges incident
only with support vertices so that the resulting graph is
connected, and then subdividing each new added edge
exactly once.

Theorem 1. If T is a tree of order n, then

γL
t (T) ≥ 2

5
(n + 1),

with equality if and only if T ∈ T1.
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M. Chellali (2008) proved the following two results.

Theorem 2. If T is a tree of order n ≥ 3 with ` leaves and s
support vertices, then

γL
t (T) ≥ 2

5
(n + `− s + 1),

with equality if and only if T ∈ T1.
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Locating-Total Domination in Trees

Theorem 3. If T is a tree of order n ≥ 2 with s support
vertices,

then

γL
t (T) ≥ n + 2− s

2
.

The lower bound is sharp for paths Pn where n ≡ 0 (mod 4).

Theorem 3 improves Theorem 2 for nontrivial trees with
n > 4`+ s− 6.
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Locating-Total Domination in Trees

Let T ∈ T2 be the family of labeled trees constructed as
follows.

Assign to each vertex a label or status, denoted by sta(v), as
follows.

Let T0 be a P6 in which the two leaves have status C, the
two support vertices have status A and the remaining two
vertices have status B.

C A B B A C

For k ≥ 1, let Tk can be obtained recursively from Tk−1 by
one of the following operations.
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Locating-Total Domination in Trees

Operation τ1.

For any y ∈ V(Tk−1), if sta(y) = C and y is a
leaf of Tk−1, then add a path xwvz and edge xy. Let
sta(x) = sta(w) = B, sta(v) = A, and sta(z) = C.

C B B A C
y x w v z

Operation τ2.

For any y ∈ V(Tk−1), if sta(y) = B, then add
a path xwv and edge xy. Let sta(x) = B, sta(w) = A, and
sta(v) = C.

C B A C
y x w v
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Locating-Total Domination in Trees

Chen and Sohn (2011)

Theorem 4. If T is a tree of order n ≥ 3 with ` leaves, then

γL
t (T) ≤ n + `

2
,

with equality if and only if T ∈ T2.
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Locating-Total Domination in Trees

Locating-Total Domination in Trees

Haynes, MAH, and J. Howard (2006)

Theorem 5. If a nontrivial tree T contains no strong
support vertex,

then

γt(T) ≤ γL
t (T) ≤ 3

2
γt(T)− 1.

Equality in lower bound: Take T to be the corona of a
nontrivial tree.

Equality is upper bound: Let T be a tree obtained from the
disjoint union of k paths P4 by joining a support vertex from
one of these paths to a support vertex from each of the other
k− 1 paths and then subdividing each new edge twice.
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Locating-Total Domination in Grid Graphs

MAH, and Rad (2011)

Theorem 6. If n ≡ r (mod 5), where 0 ≤ r < 5, then

γL
t (P2 2Pn) =

{
4bn5c+ r if r 6= 1
4bn5c+ 2 if r = 1
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Locating-Total Domination in Grid Graphs

Observation. If n ≡ 0 (mod 11),

then

γL
t (P3 2Pn) ≤ 13

11
n

A LTD-set for the grid P3 2P22
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Locating-Total Domination in Grid Graphs

Conjecture 1. For n ≥ 1,

γL
t (P3 2Pn) =

⌈
13

11
n

⌉
.

Remark: The conjecture is true for small values of n, namely
1 ≤ n ≤ 12.
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Locating-Total Domination in Graphs

General Bounds

MAH, and McCoy (2009)

Theorem 7. If G is a graph of order n ≥ 3 and maximum
degree ∆ ≥ 2 with no isolated vertex, then

γL
t (G) ≥ 2n

∆ + 2

and this bound is sharp.
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Locating-Total Domination in Graphs

General Bounds

MAH, and Rad (2011)
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Locating-Total Domination in Graphs

General Bounds

Theorem 10. If G is a connected graph of order n ≥ 2,

then

γL
t (G) ≥ diam(G) + 1

2
.

The lower bound is sharp for paths Pn, where n ≡ 0 (mod 4).

Theorem 11. If G is a connected graph of order n ≥ 2 with
minimum degree at least 3 and diameter at least 3, then

γL
t (G) ≤ n−

⌈
diam(G)

2

⌉
,

and the bound is asymptotically best possible.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

Let Gn denote the family of all connected cubic graphs of
order n,

and let

ξ(n) = max

{
γL

t (G)

γt(G)

}
,

where the maximum is taken over all graphs G ∈ Gn.

For example, ξ(4) = 3/2 and ξ(6) = 2.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

For k ≥ 2, let Nk be the cubic graph obtained from a cycle
Ck by replacing every vertex with a diamond.

We call Nk a diamond-necklace with k diamonds, and we let

Ncubic = {Nk | k ≥ 2}.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

A diamond-necklace N8 with eight diamonds.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

If G ∈ Ncubic has order n,

then γL
t (G) = n/2.

For n ≡ 0 (mod 16), we have γt(G) = 3n/8, and so

ξ(n) ≥ 4

3
.

Conjecture 2. For n sufficiently large, we have

ξ(n) ≤ 4

3
.
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Total Domination in Cubic Graphs

Total Domination in Cubic Graphs

Archdeacon, Ellis-Monaghan, Fischer, Froncek, Lam,
Seager, Wei, and Yuster (Some remarks on domination.
J. Graph Theory 46 (2004), 207–210.)

Theorem 12. If G is a graph of order n with δ(G) ≥ 3, then

γt(G) ≤ n

2
.

What are the extremal graphs?
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Sharpness of Theorem 12.

Sharpness of Theorem 12.

MAH, A. Yeo, J. Graph Theory 59 (2008), 326–348.

Theorem 13. If G is a graph of order n with δ(G) ≥ 3, then

γt(G) =
n

2

if and only if

G is the generalized Petersen graph G16 of order 16 or
G ∈ F1 ∪ F2.
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Sharpness of Theorem 12.
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The generalized Petersen graph G16 with γt(G16) = 8.
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A family F1 of cubic graphs G of order n with

γt(G) =
n

2
.
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A family F2 of cubic graphs G of order n with

γt(G) =
n

2
.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

The extremal graphs of Theorem 12,

namely the generalized
Petersen graph G16 and graphs in the family F1 ∪ F2, satisfy

γL
t (G) = γt(G).

In general, the locating-total domination number of a cubic
graph can be very much larger than its total domination
number

32/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

The extremal graphs of Theorem 12, namely the generalized
Petersen graph G16 and graphs in the family F1 ∪ F2,

satisfy

γL
t (G) = γt(G).

In general, the locating-total domination number of a cubic
graph can be very much larger than its total domination
number

32/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

The extremal graphs of Theorem 12, namely the generalized
Petersen graph G16 and graphs in the family F1 ∪ F2, satisfy

γL
t (G) = γt(G).

In general, the locating-total domination number of a cubic
graph can be very much larger than its total domination
number

32/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

The extremal graphs of Theorem 12, namely the generalized
Petersen graph G16 and graphs in the family F1 ∪ F2, satisfy

γL
t (G) = γt(G).

In general, the locating-total domination number of a cubic
graph can be very much larger than its total domination
number

32/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

Conjecture 3.

If G /∈ {K4,K3,3} is a connected cubic
graph of order n, then

γL
t (G) ≤ n

2
.
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Locating-Total Domination in Claw-Free Cubic Graphs

Locating-Total Domination in Claw-Free Cubic Graphs

F1 F2 F3

F4 F5

The family Fcubic = {F1,F2,F3,F4,F5}.
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Locating-Total Domination in Claw-Free Cubic Graphs

Locating-Total Domination in Claw-Free Cubic Graphs

Recall that Nk is a diamond-necklace with k diamonds,

and
Ncubic = {Nk | k ≥ 2}.

A diamond-necklace N8 with eight diamonds.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

MAH and C. Löwenstein (2011):

Theorem 14. If G 6= K4 is a connected cubic claw-free
graph of order n, then

γL
t (G) ≤ n

2
,

with equality if and only if G ∈ Ncubic ∪ Fcubic.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

For k ≥ 1, a diamond-bracelet Bk with k diamonds is
obtained from a diamond-necklace Nk+1 by replacing one of
the diamonds with a triangle.

A diamond-bracelet B7.
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Locating-Total Domination in Cubic Graphs

For k ≥ 1, a diamond-chain Lk with k diamonds is obtained
from a diamond-necklace Nk+1 by deleting one of the
diamonds and adding two triangles.

A diamond-chain.
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Locating-Total Domination in Cubic Graphs

Locating-Total Domination in Cubic Graphs

Sketch of Proof of Theorem 14.

By induction on the order n of a connected cubic claw-free
graph different from K4.

The bases cases are trivial. Let n ≥ 8 and assume the result
holds for all connected cubic claw-free graphs of order less
than n that are different from K4.

Let G = (V,E) be a connected cubic claw-free graph of
order n.
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The vertex set V can be uniquely partitioned into sets each
of which induce a triangle or a diamond in G.

We refer to such a partition as a triangle-diamond partition
of G, abbreviated ∆-D-partition.

Every triangle and diamond induced by a set in our
∆-D-partition we call a unit of the partition.

A unit that is a triangle we call a triangle-unit and a unit
that is a diamond we call a diamond-unit.

Two units are adjacent if there is an edge joining a vertex in
one unit to a vertex in the other unit.
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If every unit in the ∆-D-partition is a diamond-unit, then
G ∈ Ncubic, and we are done.

Hence we may assume we have at least two triangle-units.

If G contains a diamond-bracelet Bk, where k ≥ 1, then we
show that either G ∈ {F3,F5} ⊂ Fcubic or γL

t (G) < n/2.
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F3

F5
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Hence we may assume that G does not contain a
diamond-bracelet.

We now construct a multigraph M, called the
contraction-multigraph of G, as follows.

For each triangle-unit in G, we associate a vertex of M.
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If two triangle-units in G are joined by i edges, then we add i
edges joining the vertices in M corresponding to these two
triangle-units.

Further if two triangle-units in G are joined to j common
diamond-chains, then we add j edges joining the vertices in M
corresponding to these two triangle-units.

Then M is a cubic multigraph, possibly with multiple edges.

Since G contains no diamond-bracelet, M is loop-free.
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If M has a maximal independent set I, such that there is a
vertex in M that is joined with exactly two edges to vertices
in I,

then we show that γL
t (G) < n/2.

Hence we may assume there is no such maximal
independent set I in M.
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We show then that M ∈M = {M1,M2,M3,M4,M5}.

M1 M2 M3 M4 M5

The family M
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We show then that if the ∆-D-partition contains a
diamond-unit,

then γL
t (G) < n/2.

Hence we may assume that every unit in the ∆-D-partition is
a triangle-unit.
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If M = M1,

then G = F1.
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If M = M2,

then G = F2.
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If M = M3,

then G = F4.

F4
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If M = M4,

then n = 18 and γL
t (G) ≤ 8 < n/2.
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If M = M5,

then n = 24 and γL
t (G) ≤ 11 < n/2.
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Let G = (V,E) be a graph without isolated vertices.

A set S ⊆ V is a distinguishing-total dominating set (or
identifying open code), abbreviated DTD-set, of G if S is a
TD-set with the property that distinct vertices in V are
totally dominated by distinct subsets of S.

Hence, S is a DTD-set of G if S is a TD-set of G such that
for distinct vertices u, v ∈ V,

N(u) ∩ S 6= N(v) ∩ S.
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A graph is twin-free (or open identifiable) if every two
distinct vertices have distinct open neighborhoods.

A graph has a DTD-set if and only if it is twin-free.

The distinguishing-total domination number, denoted
γD

t (G) (or γIOC(G) ), of a twin-free G is the minimum
cardinality of a DTD-set of G.

If G is twin-free, then

γt(G) ≤ γL
t (G) ≤ γD

t (G).
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Distinguishing-Total Domination in Cubic Graphs

Let G be a connected cubic graph of order n that is
twin-free.

Problem. Find an upper bound on γD
t (G) in terms of n.
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Consider the hypercube Q3:
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Distinguishing-Total Domination in Cubic Graphs

Consider the hypercube Q3:

γD
t (Q3) = 6 = 3

4n
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Distinguishing-Total Domination in Cubic Graphs

For an even number n ≥ 4, the Möbius ladder Mn is a cubic
circulant graph on n vertices, formed from an n-cycle by
adding edges connecting opposite pairs of vertices in the cycle.

Two views of the Möbius ladder M14.
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Distinguishing-Total Domination in Cubic Graphs

For an even number n ≥ 4, the Möbius ladder Mn is a cubic
circulant graph on n vertices, formed from an n-cycle by
adding edges connecting opposite pairs of vertices in the cycle.

γD
t (M14) = 10 = 5

7n
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Distinguishing-Total Domination in Cubic Graphs

Let G be a connected cubic graph of order n that is
twin-free.

Problem. Find an upper bound on γD
t (G) in terms of n.
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Hypergraphs

Hypergraphs

Hypergraphs are systems of sets which are conceived as
natural extensions of graphs:

A hypergraph H = (V,E) is a finite set V of elements, called
vertices, together with a finite multiset E of arbitrary subsets
of V, called edges.

A hypergraph is k-uniform if every edge has size k.

Every (simple) graph is a 2-uniform hypergraph.
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Transversals

Transversals

A transversal in a hypergraph H is a set of vertices that
meets every edge (i.e., has a nonempty intersection with every
edge of H).

The transversal number τ(H) of H is the minimum number
of vertices meeting every edge.

We call a hypergraph H identifiable if every two edges in H
are distinct.

A distinguishing transversal in an identifiable hypergraph H
is a transversal T that distinguishes the edges, i.e., for
distinct edges e and f, we have

e ∩ T 6= f ∩ T.

The distinguishing transversal number τD(H) of H is the
minimum cardinality of a distinguishing transversal.
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Transversals

Let H = (V,E) be the hypergraph with
V = {u, v,w, x, y} and
E = {{v,w, x, y}, {u, v,w}, {u, x, y}}.
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The set T = {u, v} is a distinguishing transversal in H.
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Open Neighborhood Hypergraph

Open Neighborhood Hypergraph

For a graph G = (V,E), we denote by ONH(G) the open
neighborhood hypergraph of G.

Hence, ONH(G)= (V,C) is the hypergraph with vertex set V
and with edge set

C = {NG(x) | x ∈ V(G)},

consisting of the open neighborhoods of vertices in G.
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Open Neighborhood Hypergraph

What is the open neighborhood hypergraph ONH(G) of
the graph G shown below?
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Open Neighborhood Hypergraph
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Open Neighborhood Hypergraph
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Open Neighborhood Hypergraph
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Open Neighborhood Hypergraph

fx1
e
e
e
efx5
fx6

fx8

@
@
@
@Z

Z
Z�
�
��
�
�
�

@
@
@
@

�
�
�
�
,
,
,
,

l
l
l
l

@
@
@
@l

l
l
l

��
��
��
�
!!!!!!!

l
l
l
l
@
@
@
@

e

e
e

e

fy2
fy3
fy4
fy7

@
@
@
@Z

Z
Z�
�
��
�
�
�

@
@
@
@

�
�
�
�
,
,
,
,

l
l
l
l

@
@
@
@l

l
l
l

��
��
��
�
!!!!!!!

l
l
l
l
@
@
@
@

τD(ONH(G)) = 8.

72/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Open Neighborhood Hypergraph
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γD
t (G) = 8.
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Open Neighborhood Hypergraph

Key Observation.

For every graph G that is twin-free,

we gave

γD
t (G) = τD(ONH(G)).
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Open Neighborhood Hypergraph

Open Neighborhood Hypergraph

Thus

distinguishing-total domination in graphs

can be translated to the problem of finding

distinguishing-transversals in hypergraphs.

The main advantage of considering hypergraphs rather than
graphs is that the structure is easier to handle.
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Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Every (simple) graph is a 2-uniform hypergraph.

Let G = (V,E) be a graph of order n and size m with
maximum degree at most 3.

Let E = (E2,F2) be a weak partition (a partition in which
some of the sets may be empty) of E.

Let T be a transversal in G such that the edges in F2 are
distinguished.

Theorem 15. There exists such a transversal T such that

10|T| ≤ 6n + 2|F2|+ |E2|.

76/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Transversals in 2-Uniform Hypergraphs

Distinguishing-Transversals in 2-Uniform Hypergraphs

Corollary 1. If G is a graph of order n and size m with
maximum degree at most 3, then 5τD(G) ≤ 3n + m.

Corollary 2. If G is a cubic graph of order n, then
τD(G) ≤ 9n/10.

τD(G10) = 9
10n
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Distinguishing-Transversals in Hypergraphs of Rank 3

Let H = (V,E) be a hypergraph of rank 3 and order n with
maximum degree at most 3.

Let E = (E2,E3,F2,F3) be a weak partition of E, where
E2 ∪ F2 is the set of 2-edges in H and E3 ∪ F3 is the set of
3-edges in H.

Let T be a transversal in H such that the edges in F2 ∪ F3 are
distinguished, i.e., if e, f ∈ F2 ∪ F3 and e 6= f, then

e ∩ T 6= f ∩ T.
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Distinguishing-Transversals in Hypergraphs of Rank 3

Let X ⊆ V and let T be chosen so that X ⊆ T,

i.e., X is an
arbitrary subset of vertices, and T is forced to contain X.

Let F′2 be the set of edges e ∈ F2 such that both vertices in
e have degree at most 2 in H.

Let M be a maximum matching in the subgraph of H induced
by the set of edges in F′2.
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Distinguishing-Transversals in Hypergraphs of Rank 3

MAH and A. Yeo (2011).

Theorem 16. There exists such a transversal T satisfying

20|T| ≤ 12n + 7|F2|+ 3|F3|+ 2|E2| − 5|M|+ 8|X|.

Corollary 3. If H is a 3-uniform identifiable hypergraph of
order n and size m with maximum degree at most 3, then

τD(H) ≤ 3

5
n +

3

20
m.

Corollary 4. If G is twin-free cubic graph of order n, then

γD
t (G) ≤ 3

4
n.
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Distinguishing-Total Domination in Cubic Graphs

Consider the hypercube Q3:

γD
t (Q3) = 6 = 3

4n
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Distinguishing-Total Domination in Cubic Graphs

Let B = {Q3,M4,M14,M18,M22,M26} be a forbidden
family of six cubic graphs consisting of the hypercube Q3 and
five Möbius ladders of orders 4, 14, 18, 22 and 26,
respectively.

Conjecture 4. If G /∈ B is connected twin-free cubic graph
of order n, then

γD
t (G) ≤ 3

5
n.

If Conjecture 4 is true, then this bound would be sharp.
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five Möbius ladders of orders 4, 14, 18, 22 and 26,
respectively.

Conjecture 4. If G /∈ B is connected twin-free cubic graph
of order n, then

γD
t (G) ≤ 3

5
n.

If Conjecture 4 is true, then this bound would be sharp.

82/85 Michael A. Henning Locating- and Distinguishing-Total Domination in Graphs



Distinguishing-Total Domination in Cubic Graphs

Distinguishing-Total Domination in Cubic Graphs

For k ≥ 1, let Gk be the graph of order 10k constructed as
follows.

Let

V(G) = {x0, x1, . . . , x5k−1} ∪ {y0, y1, . . . , y5k−1}.

For every i = 0, 1, 2, . . . , k− 1 add the following edges to Gk,
where the indices are taken modulo 5k.

If i 6≡ 0 (mod 5), join xi to yi−1, yi and yi+1.

If i ≡ 0 (mod 5), join xi to yi, yi+1 and yi+4.

By construction, the graph Gk is a connected cubic graph that
is twin-free.
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The hypergraph G3

Proposition. For k ≥ 1, if Gk has order n, then γD
t (Gk) = 3

5n.
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Distinguishing-Total Domination in Cubic Graphs

THANK YOU FOR YOUR ATTENTION!

NGIYABONGA KAKHULU!
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