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Introduction Definitions, examples

Motivation and comparison of static vs. dynamic version of
identification

classical (static) identification of vertices (using r -balls)
simple and static detectors in a network that are able to detect an event in
a neighborhood of the sensor

identification of vertices using different subgraphs (dynamic scenario)
moving detectors in a network that are able to detect an event in the area
where they are ascribed to move
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Identifying vertices with sets

A set C = {C1, C2, . . . , Ck} of subgraphs of a graph G is said to identify
the vertices of G if all sets I (v , C) = {i | v ∈ Ci} are nonempty and for any
pair of distinct vertices u, v of G , I (u, C) 6= I (v , C).

If we restrict C to be a subset of a given family G of subgraphs of G , we
denote by IDG(G ), the minimum number of subgraphs of G from G needed
to identify all vertices of G .

If we take as G to be the family of all maximal stars of G , we get the
definition of identifying codes, introduced by M. G. Karpovsky,
K. Chakrabarty, and L. B. Levitin in 1998, and widely studied afterwards.
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Identification using cycles

The case when G equals the family of all cycles or closed walks of G , has
been studied for special graph classes (hypercubes, d -dimensional grids,
torii) by I. Honkala, M. G. Karpovsky, and S. Litsyn (2003), P. Rosendahl
(2003 & 2004).

Theorem (I. Honkala, M. G. Karpovsky, and S. Litsyn (2003) and P.
Rosendahl (2003))

Let G be a d-dimensional hypercube (on n = 2d vertices). Then
IDC(G ) = dlog2(n + 1)e = d + 1.

Proof.
Just take hamiltonian cycles in precisely one member in each pair of
halfcubes (subhypercubes of dimenson d − 1) and recall that intersection of
any collection of k halfcubes of d -dimensional hypercube is always a
(d − k)-dimensional hypercube.
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Identification using paths

In this talk, we present some results when G equals the family P of all
paths of a graph G .
(as proposed by P. Slater and J.L. Sewell at CID 2009)

Vertices of any graph can be identified this way (just take ”0-length” paths
(vertices) or for a graph without isolated vertices and no K2 components
take edges and longer paths). In other words there are no ”path”-twins.

We denote by IDP(G ) the minimum number of paths needed to identify all
vertices of a graph G .
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Graphs of maximum degree 2

Proposition
Let G be a connected graph of maximum degree 2 having m edges and l
vertices of degree one. Then IDP(G ) ≥ dm+l

2 e.

Proposition
Let n ≥ 1 be an integer and Pn, the path on n vertices.
Then IDP(Pn) = dn+1

2 e.
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Proposition
Let n ≥ 3 be an integer and Cn the cycle on n vertices.

IDP(C3) = 2
IDP(C4) = 3
For n ≥ 5, IDP(Cn) = dn2e
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Stars

Proposition
Let n ≥ 4 be an integer and K1,n−1, a star on n vertices.
Then IDP(K1,n−1) = d2(n−1)

3 e.
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Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.
To prove that d2`

3 e paths is enough we give a constructive procedure how to
obtain identifying set of paths of appropriate size.We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level). The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.
To prove that d2`

3 e paths is enough we give a constructive procedure how to
obtain identifying set of paths of appropriate size.We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level). The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.

To prove that d2`
3 e paths is enough we give a constructive procedure how to

obtain identifying set of paths of appropriate size.We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level). The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.
To prove that d2`

3 e paths is enough we give a constructive procedure how to
obtain identifying set of paths of appropriate size.

We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level). The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.
To prove that d2`

3 e paths is enough we give a constructive procedure how to
obtain identifying set of paths of appropriate size.We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level).

The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

Topologically irreducible trees

Topologically irreducible trees are trees with no vertices of degree 2.

Theorem

Let T be a topologically irreducible tree on at least 5 vertices, and let `
denote the number of leaves of T . Then IDP(T ) = d2`

3 e.

Sketch of a proof.
For the lower bound, observe that identifying set of paths for a tree T , will
also identify all vertices of a star K1,` obtained by contracting all non-leaf
vertices into a single vertex.
To prove that d2`

3 e paths is enough we give a constructive procedure how to
obtain identifying set of paths of appropriate size.We start from the center
of a tree (which is always either a vertex or an edge (by Jordan’s theorem)
and we extend the set of identifying paths level by level). The crucial
observation is that a vertex in a new level is either a leaf or a branching and
that once a vertex is identified it will remain so during our procedure.

http://idea.labri.fr/ Identification using paths



Introduction Definitions, examples

General trees

Theorem
Let T be a tree on n vertices, and let ` denote the number of leaves of T
and d the number of vertices of degree 2. Then IDP(T ) = d2`

3 e+ f (`, d).
Moreover f (`, d) ≈ dd2 e and f (`, d) and therefore also IDP(T ) can be
computed in O(n) time.

The main ideas of the proof
First we solve a problem for the corresponding topologically irreducible
tree. Just further solving a problem separately for all subdivided edges
would give us an upper bound for IDP(T ). In cases when 3 - ` and there
are edges that are subdivided even number of times we can lower the
number of paths we need to identify all vertices of T .
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Upper and lower bound for IDP(G ) in terms of n

Theorem

Let G be a graph on n vertices. Then dlog2(n + 1)e ≤ IDP(G ) ≤ d2(n−1)
3 e.

Proof.
Lower bound - use usual theoretic information argument (the cardinality of
the power set of a set with n elements is 2n, where one of the sets is an
empty set)
Upper bound - observe that for a spanning subgraph H of G , we have
IDP(G ) ≤ IDP(H) and the bound follows from results about trees.

There are graphs attaining lower bound (hypercubes, complete graphs,...)
and also graphs attaining the upper bound (stars on at least 5 vertices).

One can also characterize graphs attaining both bounds.
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Open and related problems, ideas

The complexity of determing IDP(G ) for an arbitrary graph.

Bounding the sizes of paths used for identification.
Similar approach for cactus graphs, block graphs, other graph families
Use other subgraph families for identification
Characterizing twins for different types of identification with subgraphs
of a given graph.
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