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Locating many objects

An optimal 1-identifying code
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Locating many objects

One object (fire, intruder, faulty processor) to be identified
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Locating many objects

Two objects leads to a problem
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Identifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

r

Consider codewords in a union of balls.
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Identifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

Again codewords in a union must be distinct.
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Identifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

A violation of the property.
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Identifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

Also single vs a pair.

Codes for locating sets of vertices in a graph – p. 3/45



Definitions:

• A code C ⊆ V (a set of sensors).
• For a set of objects X ⊆ V ,

Ir(X) =
⋃

x∈X

Br(x) ∩ C.

• A code is (r,≤ ℓ)-identifying if

Ir(X) 6= Ir(Y )

for all X 6= Y where |X|, |Y | ≤ ℓ.

• The aim again is to find the smallest cardinality of such a
code.
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Content

• Triangular and King grids for ℓ = 2.
• Binary hypercubes for ℓ ≥ 2.
• Universally identifying codes
• Weakly identifying codes
• Two generalizations of locating-dominating sets
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Triangular grid and ℓ = 2

x

y

Pattern (A): We must have I(y) 6= I(x, y).

The symmetric difference of B(y) and B(x, y).
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Triangular grid and ℓ = 2

xy

z

Pattern (B): We must have I(z, x) 6= I(z, y).

Together with the rotations and translations
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Triangular grid and ℓ = 2

xy

z

w

Pattern (C): We must have I(x, y) 6= I(z,w).
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Triangular grid and ℓ = 2

• A code C intersects every pattern (A), (B) and (C) if and
only if C is (1,≤ 2)-identifying.

• The pattern (A) already gives useful information:

Pattern (A) gives |I(c)| ≥ 3.
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Triangular grid and ℓ = 2

• A code C intersects every pattern (A), (B) and (C) if and
only if C is (1,≤ 2)-identifying.

• The pattern (A) already gives useful information:

The only choice for |I(c)| = 3.
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Triangular grid and ℓ = 2

• A code C intersects every pattern (A), (B) and (C) if and
only if C is (1,≤ 2)-identifying.

• The pattern (A) already gives useful information:

Two choices for |I(x)| = 4 when x /∈ C.
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Triangular grid and ℓ = 2

• Patterns (A) and (B) would give density 1/2 where

D = lim sup
n→∞

|C ∩ Qn|
|Qn|

.
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Triangular grid and ℓ = 2

• Patterns (A) and (B) would give density 1/2 where

D = lim sup
n→∞

|C ∩ Qn|
|Qn|

.
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Triangular grid and ℓ = 2

• The Pattern (C) changes the game a lot!
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Triangular grid and ℓ = 2

• Optimal density is 9/16 (L.- Honkala, 2004)
• The proof is based on showing that every vertex is covered

in average by
63

16
≈ 3.9375

codewords.
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King grid ℓ = 2.

• V = Z
2 and adjacent if d(x, y) ≤

√
2.

• There is a code with density 3/7 ≈ 0.4286... (Honkala- L.).

• A lower bound 5/12 ≈ 0.4166.. by M. Pelto (2010).
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King grid ℓ = 2.

A code C is (1,≤ 2)-identifying if and only if the following
patterns intersect with C.
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King grid ℓ = 2.

Where do they come from?
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King grid ℓ = 2.

The frame with 12 vertices
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King grid ℓ = 2.

The only way to have exactly 4 codewords
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King grid ℓ = 2.

1/2

1/2

Codewords nearby
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King grid ℓ = 2.

1/2

1/2

1

1

1

A neighbouring 6+ -frame
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King grid ℓ = 2.

1

For 5-frame also a neighbouring 6+ -frame
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King grid ℓ = 2.

• If fact, we can show that there is in average 5 + 3/37
codewords among a 12 frame.

• A (1,≤ 2)-identifying code in the king grid has density at
least 47/111 ∼ 0.423....

• Joint work with Foucaud and Parreau (2011)
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ℓ = 3 is not possible in king and triangular grid

It is not possible to distinguish between the sets I(x, y) and
I(x, y, z).

x yz
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Binary n-cube

• If a 6= b, then

|B1(a) ∩ B1(b)| =

{

2 if d(a, b) = 1 or 2

0 otherwise.

• If the intersection of three Hamming spheres of radius one
is nonempty, then it consists of a unique point.

• no triangles

000

111

100

010

001

101

011

110
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Optimal codes when ℓ ≥ 3

• A subset of vertices C is called a µ-fold covering, if
|I(x)| ≥ µ for all x ∈ V .

• Let ℓ ≥ 3. A code is (1,≤ ℓ)-identifying ⇔ it is a (2ℓ − 1)-fold
covering.

• (L. 2002) Let ℓ ≥ 3. For an infinite family of n

M
(≤ℓ)
1 (n) = (2ℓ − 1)

2n

n + 1
.
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Outline of the proof (ℓ = 3), so 2ℓ − 1 = 5:

x

A word covered by 2ℓ − 2 codewords.
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Outline of the proof (ℓ = 3), so 2ℓ − 1 = 5:

x

y z

Other words at distance two.
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Outline of the proof (ℓ = 3), so 2ℓ − 1 = 5:

x

y z

A violation of the property.

I(y, z) = I(x, y, z)
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Outline of the proof: The other direction.

• Suppose C is (2ℓ − 1)-fold covering.

• We need to show that I(X) 6= I(Y ) for any distinct X and Y
of size |X|, |Y | ≤ ℓ.

• Assume that x ∈ X \ Y .

• If |Y | ≤ ℓ − 1, then from 2(ℓ − 1) < 2ℓ − 1 ≤ |I(x)|, it follows
that is enough to look at the case |X| = |Y | = ℓ.
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Outline of the proof:

• Now there exists (besides x) also g ∈ Y \ X.

• In fact, 1 ≤ d(x, a) ≤ 2 for all a ∈ Y and 1 ≤ d(g, b) ≤ 2 for all
b ∈ X.

• In particular, 1 ≤ d(x, g) ≤ 2.
• We may assume x = 000 . . . 0.
• Consider the case d(x, g) = 1.
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Outline of the proof.

Let ℓ = 3, X = {x, y, z} and Y = {g, h, k}.

x

g

Y

There must be a word y covering exactly two of I(g).
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Outline of the proof.

Let ℓ = 3, X = {x, y, z} and Y = {g, h, k}.

x

y

g

Y

Distance must be three from x.
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Outline of the proof.

Let ℓ = 3, X = {x, y, z} and Y = {g, h, k}.

x

y

g

Y

1110000...00

Codewords at distance four in I(X) .
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Outline of the proof.

Let ℓ = 3, X = {x, y, z} and Y = {g, h, k}.

x

y

g

No words of above this!Y

Y

Codewords at distance four in I(X) but not in I(Y ).
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Outline of the proof.

• Hence for ℓ ≥ 3, if C is (2ℓ − 1)-fold covering, we always
have I(X) = I(Y ) ⇒ X = Y.

• If ℓ = 2, it holds again that (1,≤ 2)-identifying code is 3-fold
covering.

• However, the other direction is not true.
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The case ℓ = 2

• Idea: Optimal initial codes C for n = 5 and n = 7 combined
with construction

Π(C) = {(π(u), u, u + c) | u ∈ Fn
2 , c ∈ C} ⊆ F 2n+1

2

where π(u) is the parity check bit: π(01100) = 0 and
π(10101) = 1.

• Two optimal infinite families:

• M
(≤2)
1 (3 · 2k − 1) = 23·2k−k−1 for k ≥ 1

• M
(≤2)
1 (2k − 1) = 3 · 22k−k−1 for k ≥ 3
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Radius r > 1, results on the rate when ℓ = 1

• Mr(n) denotes the smallest cardinality of an r-identifying
code of length n.

• What is α in Mr(n) = p(n) · 2αn?

• Honkala and Lobstein (2002)

lim
n→∞

1

n
log2 Mr(n) = 1 − h(ρ)

where r = ⌊ρn⌋ and h(x) is the binary entropy function

h(x) = −x log2 x − (1 − x) log2(1 − x).

• Independently also found by R. Ahlswede in 2006.
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A figure of the optimal rate:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

r

lim
n→∞

1

n
log2 Mr(n) = 1 − h(ρ)

where r = ⌊ρn⌋.
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Polynomial size of codes:

Honkala and Lobstein showed that for n ≥ 3,

M⌊n

2
⌋(n) ≤

{

n2−n+2
2 , n odd,

n2−4
2 , n even.

A trivial lower bound:

Mr(n) ≥ n + 1

for any radius r.
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Radius r > 1 and ℓ > 1

• Let now ℓ > 1 be fixed.

• What is α in M
(≤ℓ)
r (n) = p(n) · 2αn?

• Clearly,

lim inf
n→∞

1

n
log2 M (≤ℓ)

r (n) ≥ 1 − h(ρ).
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Radius r > 1 and ℓ > 1

• Janson- L. 2009:
• For any fixed ℓ ≥ 1 we obtain

lim
n→∞

1

n
log2 M (≤ℓ)

r (n) = 1 − h(ρ)

when ρ ∈ (0, 1/2) and r/n → ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

r

Do not exist
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Radius r > 1 and ℓ > 1

• For r ≥ n/2, there is no (1,≤ 2)-identifying code:

000...00

111...11

r
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About the proof:

A random code gives

M (≤ℓ)
r (n) ≤ 2nℓ

2n

mn(r, ℓ)

where
mn(r, ℓ) = min

X,Y ⊆Fn, |X|,|Y |≤ℓ
|Br(X)△Br(Y )|

and △ denotes the symmetric difference.

We are able to show that

mn(r, ℓ) ≥ c

(

n

r

)

.
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Polynomial size of codes:

For ℓ ≥ 2 there exists codes with

M (≤ℓ)
r (n) ≤ An3/2

where r ≈ n/2.
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Polynomial size of codes:

For ℓ ≥ 2 there exists codes with

M (≤ℓ)
r (n) ≤ An3/2

where r ≈ n/2.

This is not far from the best possible, since

M (≤ℓ)
r (n) & ℓn.
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Small δ(G) do not allow too large ℓ

• Suppose we have a graph, whose minimum degree equals
δ.

v
v5

v4

v3

v2v1

• Clearly, I(v1, v2, . . . , vδ) = I(v1, v2, . . . , vδ, v), so the graph
cannot admit a (1,≤ ℓ)-identifying code for ℓ > δ.

• Therefore, ℓ is modest for grids. For binary n-cube, we have
ℓ up to ⌊n/2⌋ + 1.
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Universally identifying codes

• Suppose we have a finite number of vertices to locate, but
there is no a priori upper limit ℓ.

• A dominating code C ⊆ V satisfying the following property
is a universally identifying code: Suppose S = I(X) for finite
X ⊆ V , then for every finite X ′ ⊆ V such that S = I(X ′) we
have vS ∈ ⋂

X ′.

• Hence, we can determine at least one of the objects, fix it
and continue the process.
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Universally identifying codes

A universally identifying code in the square grid
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Universally identifying codes

Take the point upper-rightmost point (i, j) of S.
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Universally identifying codes

Conclude that (i − 1, j) is always in X when S = I(X).
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Universally identifying codes

• We cannot do much better than this, density always 1.
• Non-codewords in green, B in black and Y in yellow. Now

I(X) = (B ∪ Y ) ∩ C for any X containing all but one of B.
• If there are noncodewords with positive density, then one of

such patterns always appears.
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Universally identifying codes

1 m432

I

II

III

m

Back to the square grid (small cases avoided!)
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Universally identifying codes

1

m

3

2

I

II

III

m

Construct a bipartite graph.
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Universally identifying codes

1

m

3

2

I

II

III

m

Number of edges in a graph with no 4-cycle O(K3/2). So
|N | ∼ n3/2 and density equals zero.
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Weakly identifying codes

• We know now an upper limit ℓ and use the process, so that
we can determine one by one F from I(F ).

• A dominating set C ⊆ V is weakly (1,≤ ℓ)-identifying if it
has the property: if S = I(X) for some X ⊆ V such that
|X| ≤ ℓ, then for every X ′, |X ′| ≤ ℓ with S = I(X ′) we have
vS ∈

⋂

X ′.

• There is no (1,≤ ℓ)-identifying code in the square grid when
ℓ ≥ 4.

• There is a weakly (1,≤ ℓ)-identifying code in the square grid
with density ℓ/(ℓ + 1) for any ℓ.
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Weakly identifying codes

• Optimal density for usual (1,≤ 3)-identifying code in the
square grid equals 1.

• A weakly (1,≤ 3)-identifying code of density 7/12.
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From ID to LD

• Locating-dominating sets (P. Slater) are closely related to
identifying codes.

• C ⊆ V is a r-locating-dominating set if Ir(x) is nonempty for
all x ∈ V \ C and

Ir(x) 6= Ir(y)

for any x 6= y where x, y ∈ V \ C.
• How to generalize the concept to higher ℓ?
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Generalizing locating-dominating sets

• C ⊆ V is (r,≤ ℓ)-LDB if

Ir(X) 6= Ir(Y )

for all X,Y ⊆ V \ C, X 6= Y , |X|, |Y | ≤ ℓ.
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Generalizing locating-dominating sets

• C ⊆ V is (r,≤ ℓ)-LDA if

Ir(X) 6= Ir(Y )

or
X ∩ C 6= Y ∩ C

for all X,Y ⊆ V , X 6= Y , |X|, |Y | ≤ ℓ.
• Both are LD-sets if ℓ = 1.
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LDA and LDB

(1,≤ 4)-LDB set in a hypercube
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LDA and LDB

x

not a (1,≤ 2)-LDA set
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LDA and LDB

x

y

Now I(x) = I(x, y) and {x} ∩ C = {x, y} ∩ C
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LDA and LDB

• (1,≤ ℓ)-LDA is not (1,≤ ℓ)-identifying, but some similarities
exist (Honkala-L.-Ranto 2004):

• In a hypercube any non-codeword is covered by (2ℓ − 1)
vertices of (1,≤ ℓ)-LDA, i.e. the optimal size

M ∼ 2ℓ − 1

n
2n.

• For (1,≤ ℓ)-LDB the optimal size is

M = 2n−1

for ℓ ≥ (
√

2n + 2n + 1 − 1)/2.
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LDA and LDB

• Consider cycles (Exoo-Junnila-L.,2010):
• There is only trivial (r,≤ ℓ)-LDA set when ℓ ≥ 3

• The size of optimal (r,≤ 2)-LDA is

gcd(r, n)

⌊

n

2 gcd(r, n)

⌋

.
• The size of optimal (r,≤ ℓ)-LDB is

⌊

rn

r + 1

⌋

for ℓ ≥ 3, n ≥ 2r + 2 and n 6≡ r + 1 mod 2r + 2.
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Thank you!
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