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Locating many objects

WAVAVAVAVAVAVAVY

An optimal 1-identifying code
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Locating many objects

WAVAVAVAVAVAVAVY

One object (fire, intruder, faulty processor) to be identified

Codes for locating sets of vertices in a graph — p. 2/«



Locating many objects

WAVAVAVAVAVAVAVY

Two objects leads to a problem
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ldentifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

Consider codewords In a union of balls.
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ldentifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

Again codewords in a union must be distinct.
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ldentifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

A violation of the property.
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ldentifying several objects :

A more demanding class of codes introduced also by Karpovsky
et al.

T

Also single vs a pair.
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Definitions:

* Acode C CV (asetof sensors).
* For a set of objects X C V,

L(X)= | J B:(z)nC.
reX

* Acodeis (r, < ¢)-identifying if
I,(X) # L(Y)

for all X # Y where | X|,|Y| < 4.

* The aim again is to find the smallest cardinality of such a
code.
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Content

* Triangular and King grids for ¢ = 2.

* Binary hypercubes for ¢ > 2.

* Universally identifying codes

* Weakly identifying codes

* Two generalizations of locating-dominating sets
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Triangular grid and £ = 2

NONINININININSN/

<
o

Pattern (A): We must have I(y) # I(z,y).
The symmetric difference of B(y) and B(z,y).
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Triangular grid and £ = 2

NONINININININSN/

(<)

Pattern (B): We must have I(z,z) # I(z,y).

Together with the rotations and translations
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Triangular grid and £ = 2

(<)

Pattern (C): We must have I(x,y) # I(z,w).
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Triangular grid and £ = 2

* A code C intersects every pattern (A), (B) and (C) if and
only if C'is (1, < 2)-identifying.

* The pattern (A) already gives useful information:

NONINININININSN/

Pattern (A) gives |I(c)| > 3.
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Triangular grid and £ = 2

* A code C intersects every pattern (A), (B) and (C) if and
only if C'is (1, < 2)-identifying.

* The pattern (A) already gives useful information:

<)
N

(K

7 7

NVAVAVAVAVAVAVAYS

The only choice for |I(c)| = 3.
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Triangular grid and £ = 2

* A code C intersects every pattern (A), (B) and (C) if and
only if C'is (1, < 2)-identifying.

* The pattern (A) already gives useful information:

N/
O
\7 Vi Vi
/> O O
\/
Vi
N

Two choices for |I(z)| = 4 when x ¢ C.
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Triangular grid and £ = 2

* Patterns (A) and (B) would give density 1/2 where

CNQEy
D:Iimsup’ \QQ\? ’

</
(D

1V
i

L8
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Triangular grid and £ = 2

* Patterns (A) and (B) would give density 1/2 where

C'N
D = limsup | Qn’
R N
8\ O
Vi 7
O 2
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Triangular grid and £ = 2

* The Pattern (C) changes the game a lot!

PN

e e vavavivd

NN/ N NASN NN
/
/

NI\
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Triangular grid and £ = 2

* Optimal density is 9/16 (L.- Honkala, 2004)

* The proof is based on showing that every vertex is covered
In average by

63
— ~ 3.9375
16

codewords.
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King grid £ = 2.

* V =72 and adjacent if d(z,y) < V2.
* There is a code with density 3/7 ~ 0.4286... (Honkala- L.).

NNZAS "N 7N ANZAN 4

* Alower bound 5/12 ~ 0.4166.. by M. Pelto (2010).
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King grid £ = 2.

A code C'is (1, < 2)-identifying if and only if the following
patterns intersect with C.
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King grid £ = 2.

Ny

Where do they come from?
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King grid £ = 2.

The frame with 12 vertices
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King grid £ = 2.

The only way to have exactly 4 codewords

Codes for locating sets of vertices in a graph — p. 13/



King grid £ = 2.

o

o

Codewords nearby
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King grid £ = 2.

N
\/\&

A neighbouring 6™ -frame
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King grid £ = 2.

For 5-frame also a neighbouring 6% -frame
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King grid £ = 2.

* |f fact, we can show that there is in average 5 + 3/37
codewords among a 12 frame.

* A (1, < 2)-identifying code in the king grid has density at
least 47/111 ~ 0.423....

* Joint work with Foucaud and Parreau (2011)
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¢ = 3 is not possible in king and triangular grid

It is not possible to distinguish between the sets I(x,y) and
I(x,y,z).
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Binary n-cube

* If a # b, then

|Bi(a) N B1(b)| = {

2 ifd(a,b) =1o0r2

0 otherwise.

* |f the intersection of three Hamming spheres of radius one
IS nonempty, then it consists of a unique point.

* no triangles
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Optimal codes when ¢ > 3

* A subset of vertices C'is called a pu-fold covering, if
[ I(z)| > pforalxeV.

°* Let/ > 3. Acodeis (1, < ¢)-identifying < itis a (2¢ — 1)-fold
covering.

* (L. 2002) Let ¢ > 3. For an infinite family of n

(SO \ _ (o5 1\ 2
M= () = (20~ 1) =
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Outline of the proof (¢ = 3),s02¢ — 1 = b:

QQQ/Q

A word covered by 2/ — 2 codewords.
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Outline of the proof (¢ = 3),s02¢ — 1 = b:

Other words at distance two.
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Outline of the proof (¢ = 3),s02¢ — 1 = b:

A violation of the property.

I(y,z) = I(z,y, 2)
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Outline of the proof: The other direction.

* Suppose C'is (2¢ — 1)-fold covering.

* We need to show that I(X) # I(Y') for any distinct X and Y
of size | X|,|Y| < /.

°* Assumethatx € X \Y.

* IflY|</—1,thenfrom2(/—1) <2/ —1 < |I(x)|, it follows
that is enough to look at the case | X| = |Y| = /.
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Outline of the proof:

* Now there exists (besides x) also g € Y \ X.

°* Infact, 1 < d(x,a) <2foralla e Y and 1 < d(g,b) < 2 for all
be X.

° |n particular, 1 < d(x,g) < 2.
* We may assume x = 000...0.
* Consider the case d(z,g) = 1.
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Outline of the proof.

let/ =3, X ={z,y,z}and Y = {g, h, k}.

There must be a word y covering exactly two of I(g).
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Outline of the proof.

let/ =3, X ={z,y,z}and Y = {g, h, k}.

Distance must be three from z.
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Outline of the proof.

let/ =3, X ={z,y,z}and Y = {g, h, k}.

\y 1110000...00

Codewords at distance four in I(X) .
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Outline of the proof.

let/ =3, X ={z,y,z}and Y = {g, h, k}.

No words of Y above Es!

Codewords at distance four in I(X) but notin I(Y").
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Outline of the proof.

* Hence for ¢ > 3, if C'is (2¢ — 1)-fold covering, we always
have I(X)=I1I(Y)= X =Y.

* If ¢ =2, it holds again that (1, < 2)-identifying code is 3-fold
covering.

* However, the other direction Is not true.
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The case / = 2

* |dea: Optimal initial codes C for n = 5 and n = 7 combined
with construction

I(C) = {(n(u),u,u+c) |ue F ccC} C F3"H
where 7(u) is the parity check bit: 7(01100) = 0 and
7(10101) = 1.

* Two optimal infinite families:

o MISP(3.2F _1)=232"k-lforf > 1

o MISP(2k _1)=3.22"k-lforf >3
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Radius r > 1, results on the rate when ¢ = 1

* M, (n) denotes the smallest cardinality of an r-identifying
code of length n.

°* Whatis a in M,.(n) = p(n) - 24™?
* Honkala and Lobstein (2002)

1
lim —logs M, (n) =1 — h(p)

n—oo N

where » = | pn| and h(x) is the binary entropy function

h(x) = —xlogsx — (1 — x)log,(1 — x).

* Independently also found by R. Ahlswede in 2006.
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A figure of the optimal rate:

0.6 0.8 1

lim —log, M, (n) =1 — h(p)

n—oo N

where r = |pn|.
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Polynomial size of codes:

Honkala and Lobstein showed that for n > 3,

2
n—_n+2, n odd,

Mz i(n) <4 .2
131 )_{”24, n even.

A trivial lower bound:
M,(n) >n+1

for any radius r.
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Radius” > land ¢ > 1

* Let now / > 1 be fixed.
* Whatis « in M'=Y (n) = p(n) - 2972

* Clearly,

1
liminf = log, M9 (n) > 1 — h(p).

n—oo n o
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Radius” > land ¢ > 1

* Janson- L. 2009:
* For any fixed Z > 1 we obtain

lim ! log, M{S9(n) =1 — h(p)

n—oo N,

when p € (0,1/2) and r/n — p.
1
0.8
0 6l Do not exist
0.4/

0. 2;

0.6 0.8 1
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Radius” > land ¢ > 1

°* Forr > n/2, thereis no (1, < 2)-identifying code:
I11...11

N
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About the proof:

A random code gives

2n
(<0) <
M=% (n) < 2n€mn(r, 0
where
My, (1, 0) = min 1B (X)AB-(Y)|

X, YCF», | X|,|Y|<¥
and A denotes the symmetric difference.

We are able to show that

M (7, £) > ch)
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Polynomial size of codes:

For ¢ > 2 there exists codes with

MSD (n) < An?/?

r

where r ~ n/2.
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Polynomial size of codes:

For ¢ > 2 there exists codes with

MSD (n) < An?/?

r

where r ~ n/2.

This is not far from the best possible, since
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Small §((G) do not allow too large ¢

* Suppose we have a graph, whose minimum degree equals

).
v, V2
V5/ \
V3
V,
* Clearly, I(vi,v9,...,v5) = I(v1,v9,...,v5,v), SO the graph

cannot admit a (1, < /)-identifying code for ¢ > ¢.

* Therefore, ¢ is modest for grids. For binary n-cube, we have
fupto [n/2] + 1.
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Universally identifying codes

* Suppose we have a finite number of vertices to locate, but
there is no a priori upper limit 2.

* A dominating code C' C V satisfying the following property
IS a universally identifying code: Suppose S = I(X) for finite
X C V, then for every finite X’ C V such that S = I(X’) we
have vg € (N X".

* Hence, we can determine at least one of the objects, fix it
and continue the process.
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Universally identifying codes

SSEDSSS!

A universally identifying code in the square grid
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Universally identifying codes

‘

Take the point upper-rightmost point

/N

i,7) of S.
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Universally identifying codes

3

e & & 0 0 ¢
o o O 0 0 o
o & O O o ¢

Conclude that (¢ — 1, j) is always in X when § = I(X).
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Universally identifying codes

* We cannot do much better than this, density always 1.

* Non-codewords in green, B in black and Y in yellow. Now
I(X)=(BUY)NC forany X containing all but one of B.

* |f there are noncodewords with positive density, then one of
such patterns always appears.

®
O—8—O
O @ @ @
® 6 6 o o o
o9 @ @ O ¢ ©o
@ @ @
—@——0
@
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Universally identifying codes

1 2 3 4 m
I
II o
[II
m

Back to the square grid (small cases avoided!)
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Universally identifying codes

I

III 3

m m

Construct a bipartite graph.
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Universally identifying codes

I

III 3

m m

Number of edges in a graph with no 4-cycle O(K?3/2). So
IN| ~ n3/2 and density equals zero.
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Weakly identifying codes

* We know now an upper limit ¢ and use the process, so that
we can determine one by one F' from I(F)).

* A dominating set C' C V is weakly (1, < ¢)-identifying if it
has the property: if S = I(X) for some X C V such that
| X| </, then for every X/, | X'| < ¢with S = I(X') we have
vs € N X'.

* Thereis no (1, < ¢)-identifying code in the square grid when
¢ > 4.

* There is a weakly (1, < /)-identifying code in the square grid
with density ¢/(¢ + 1) for any ¢.
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Weakly identifying codes

* Optimal density for usual (1, < 3)-identifying code in the
square grid equals 1.

* A weakly (1, < 3)-identifying code of density 7/12.
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From ID to LD

* Locating-dominating sets (P. Slater) are closely related to
identifying codes.

* (' C Vis ar-locating-dominating set if I,.(z) is nonempty for
allz e V\ C and
I (z) # In(y)
for any x # y where x,y € V' \ C.
* How to generalize the concept to higher ¢?
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Generalizing locating-dominating sets

e CCVis(r,<()-LDB if

1,(X) # I,(Y)

forall X, Y CV\C, X #£Y, | X|[,|Y]| </
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Generalizing locating-dominating sets

© CCVis(r,<0)-LDA if

I,(X) # L(Y)
or
XNC#YnNnC
forall X, Y CV, X £Y, | X|[,|Y]| < /.
* Both are LD-sets if £ = 1.
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LDA and LDB

/
N

@

(1,< 4)-LDB set in a hypercube
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LDA and LDB

J
N

A

not a (1, < 2)-LDA set
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LDA and LDB

N 4
s

Now I(z) = I(z,y) and {} NC = {z,y} N C
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LDA and LDB

° (1,< ¢)-LDAis not (1, < /¢)-identifying, but some similarities

exist (Honkala-L.-Ranto 2004):

* In a hypercube any non-codeword is covered by (2¢ — 1)

vertices of (1, < 7)-LDA, i.e. the optimal size

20 — 1
n

M ~ 2",

* For (1, < ¢)-LDB the optimal size is

M =21

fort > (V2" +2n+1—-1)/2.
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LDA and LDB

* Consider cycles (Exoo-Junnila-L.,2010):
® There is only trivial (r, < ¢)-LDA setwhen ¢ > 3
* The size of optimal (r, < 2)-LDA is

ged(r, n) {2 gcdn(r, n)J

* The size of optimal (r, < ¢)-LDB is

B

for{ >3, n>2r+2andn#r+1 mod 2r + 2.
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Thank you!
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