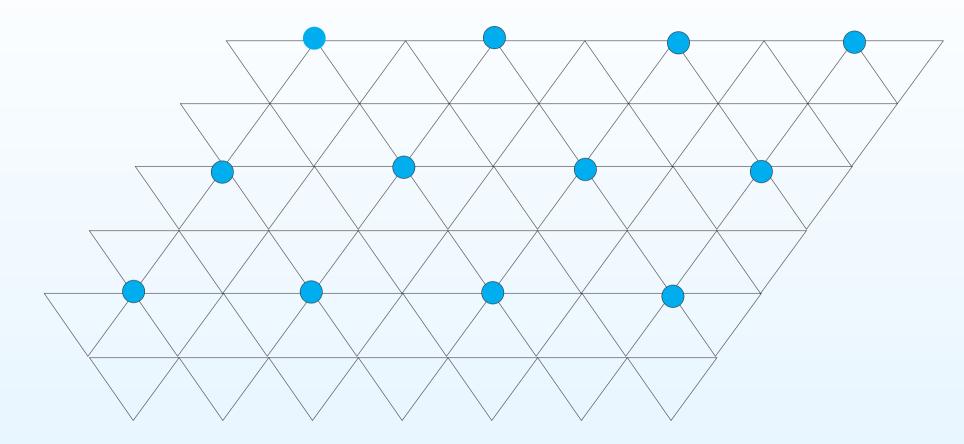
Codes for locating sets of vertices in a graph

Tero Laihonen

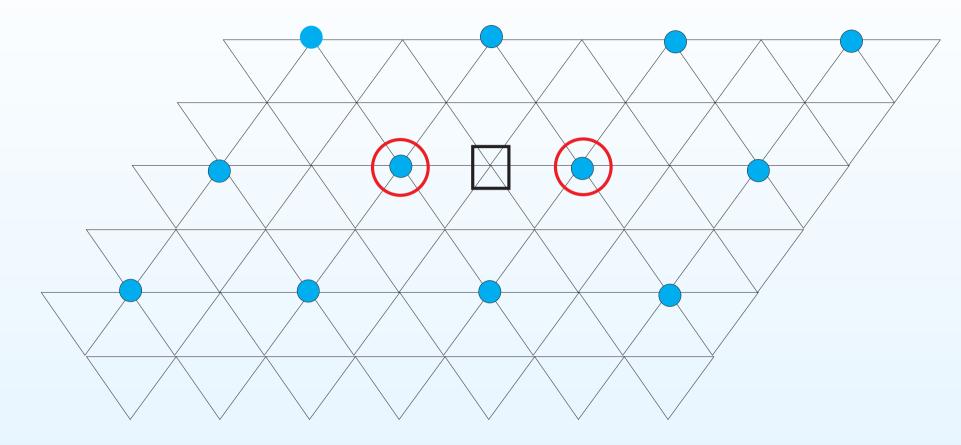
Department of Mathematics, University of Turku, Finland

Locating many objects



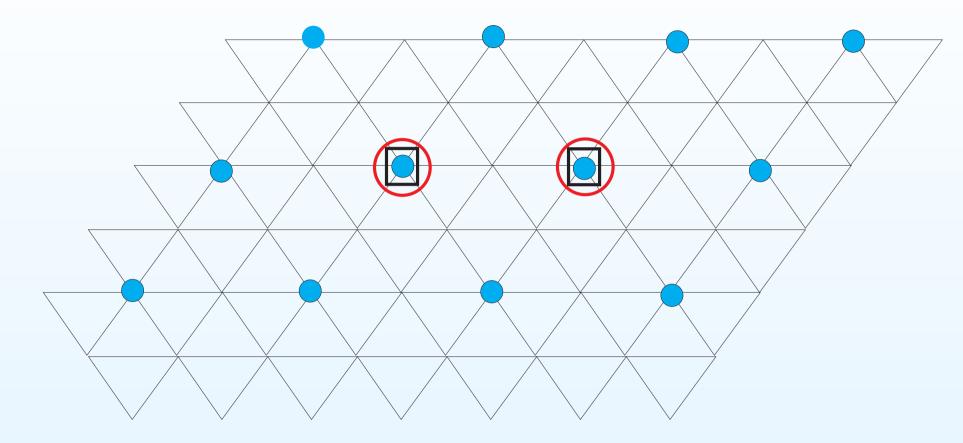
An optimal 1-identifying code

Locating many objects



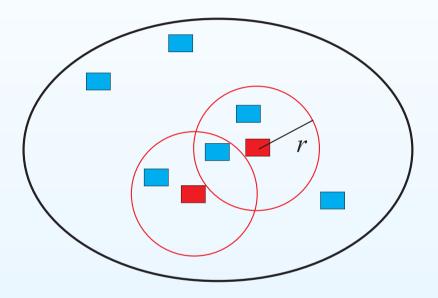
One object (fire, intruder, faulty processor) to be identified

Locating many objects



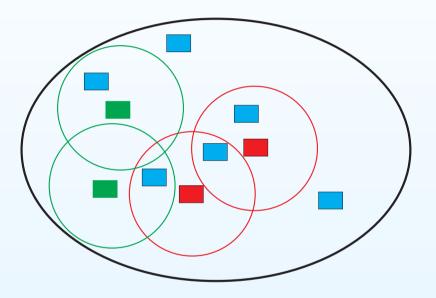
Two objects leads to a problem

A more demanding class of codes introduced also by Karpovsky et al.



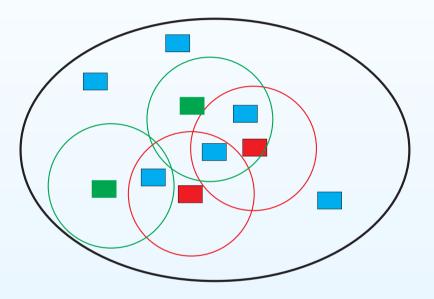
Consider codewords in a union of balls.

A more demanding class of codes introduced also by Karpovsky et al.



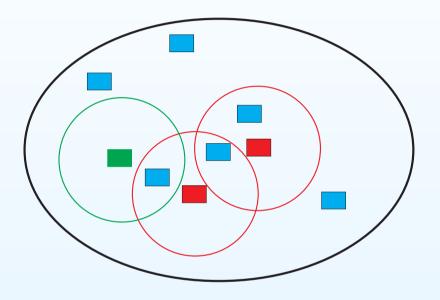
Again codewords in a union must be distinct.

A more demanding class of codes introduced also by Karpovsky et al.



A violation of the property.

A more demanding class of codes introduced also by Karpovsky et al.



Also single vs a pair.

Definitions:

- A code $C \subseteq V$ (a set of sensors).
- For a set of objects $X \subseteq V$,

$$I_r(X) = \bigcup_{x \in X} B_r(x) \cap C.$$

• A code is $(r, \leq \ell)$ -*identifying* if

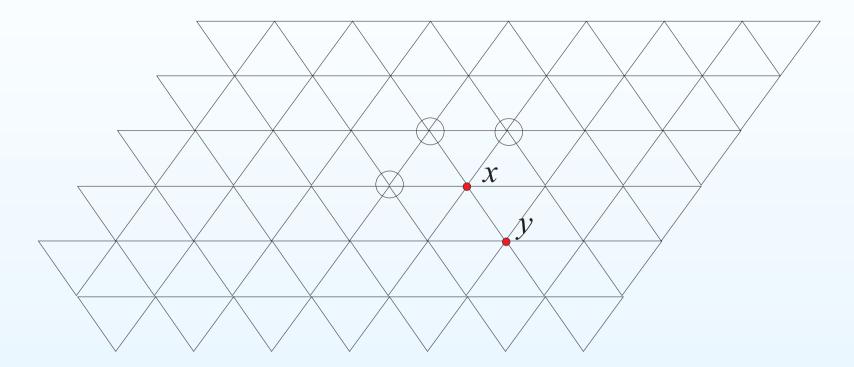
 $I_r(X) \neq I_r(Y)$

for all $X \neq Y$ where $|X|, |Y| \leq \ell$.

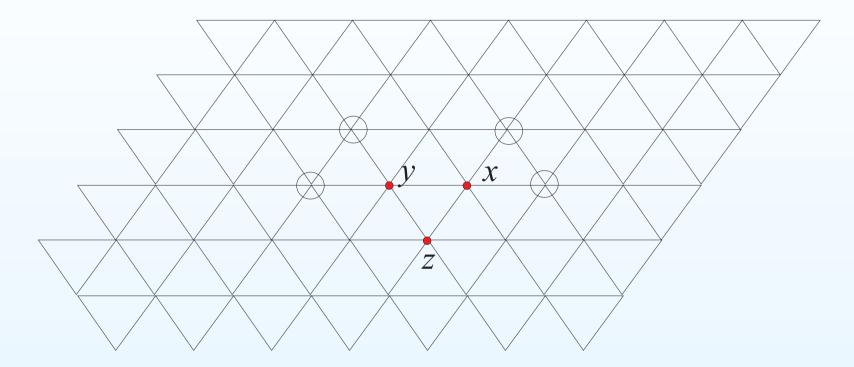
• The aim again is to find the smallest cardinality of such a code.

Content

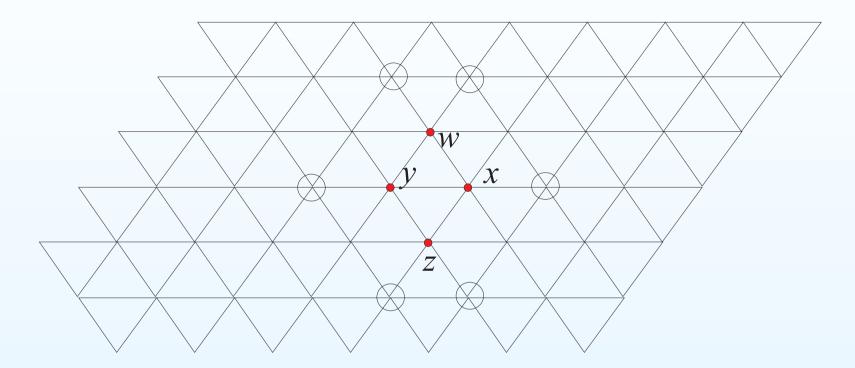
- Triangular and King grids for $\ell = 2$.
- Binary hypercubes for $\ell \geq 2$.
- Universally identifying codes
- Weakly identifying codes
- Two generalizations of locating-dominating sets



Pattern (A): We must have $I(y) \neq I(x, y)$. The symmetric difference of B(y) and B(x, y).

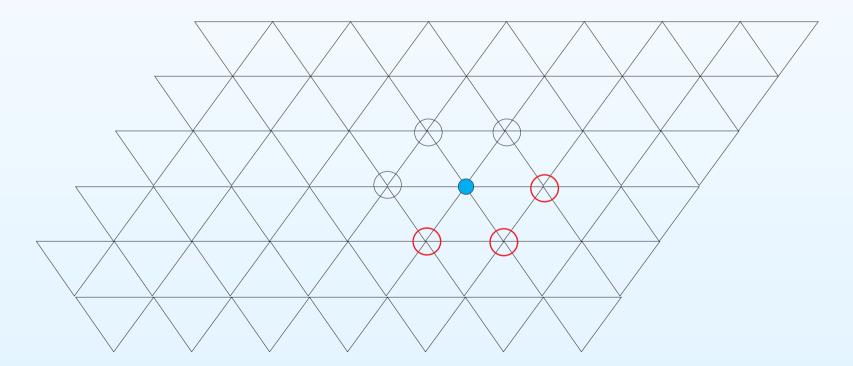


Pattern (B): We must have $I(z, x) \neq I(z, y)$. Together with the rotations and translations



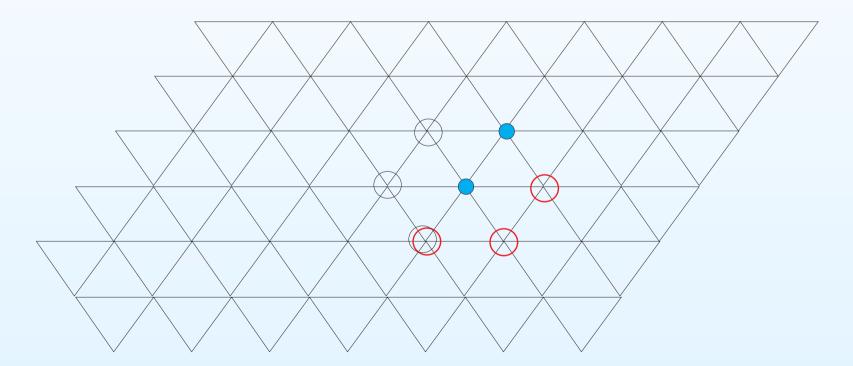
Pattern (C): We must have $I(x, y) \neq I(z, w)$.

- A code C intersects every pattern (A), (B) and (C) if and only if C is (1, ≤ 2)-identifying.
- The pattern (A) already gives useful information:



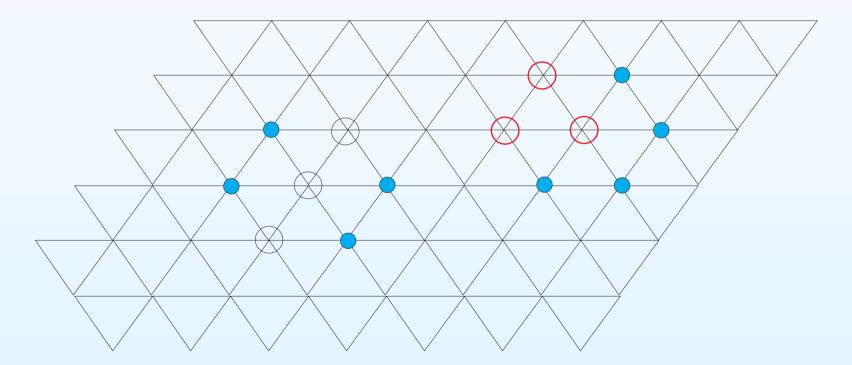
Pattern (A) gives $|I(c)| \ge 3$.

- A code C intersects every pattern (A), (B) and (C) if and only if C is (1, ≤ 2)-identifying.
- The pattern (A) already gives useful information:



The only choice for |I(c)| = 3.

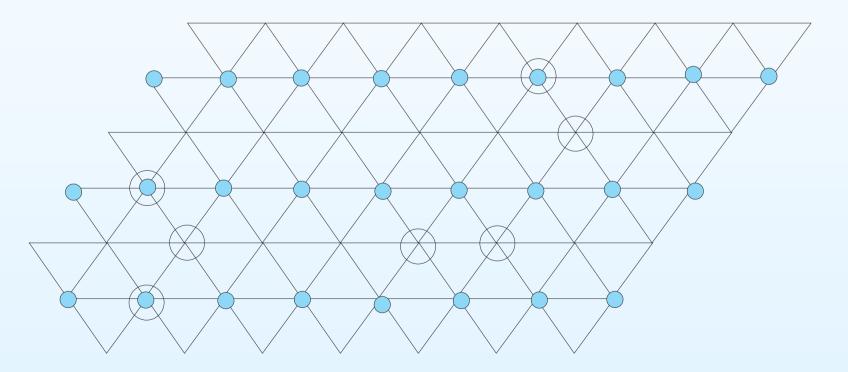
- A code C intersects every pattern (A), (B) and (C) if and only if C is (1, ≤ 2)-identifying.
- The pattern (A) already gives useful information:



Two choices for |I(x)| = 4 when $x \notin C$.

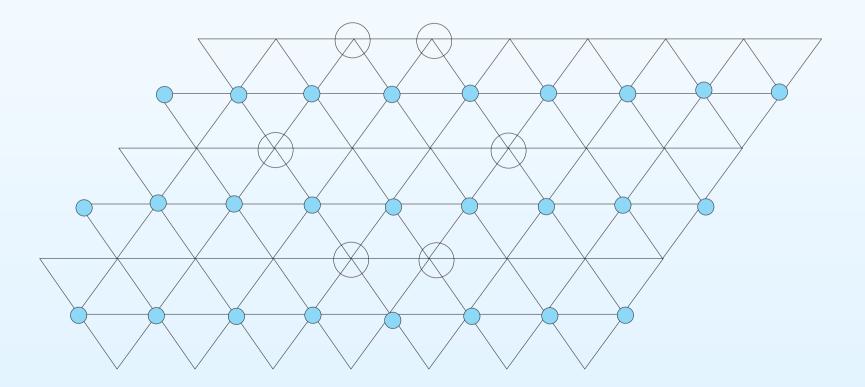
• Patterns (A) and (B) would give density 1/2 where

$$D = \limsup_{n \to \infty} \frac{|C \cap Q_n|}{|Q_n|}.$$

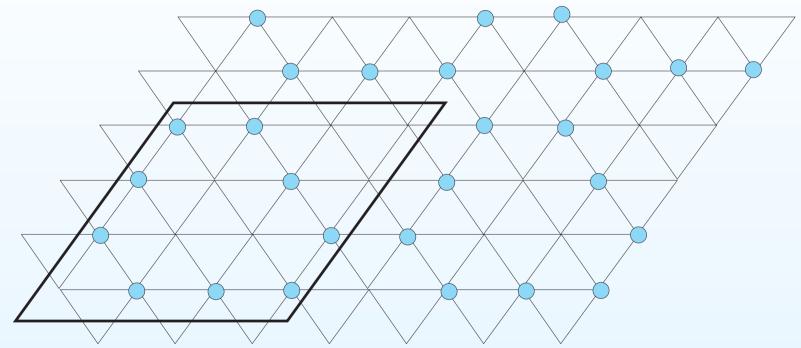


• Patterns (A) and (B) would give density 1/2 where

$$D = \limsup_{n \to \infty} \frac{|C \cap Q_n|}{|Q_n|}.$$



• The Pattern (C) changes the game a lot!



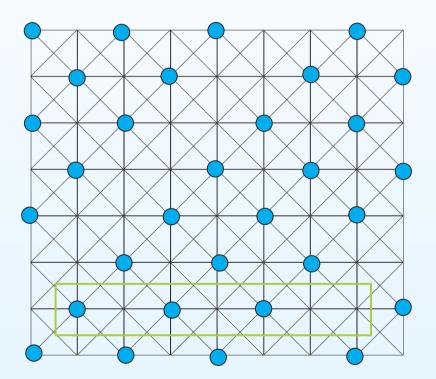
- Optimal density is 9/16 (L.- Honkala, 2004)
- The proof is based on showing that every vertex is covered in average by

$$\frac{63}{16} \approx 3.9375$$

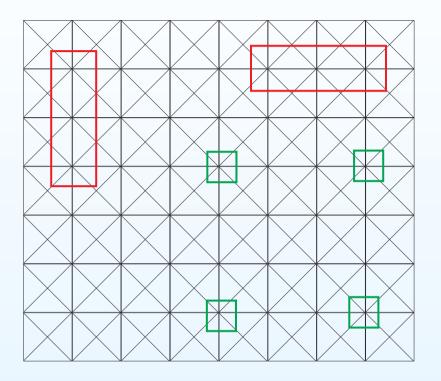
codewords.

King grid $\ell = 2$.

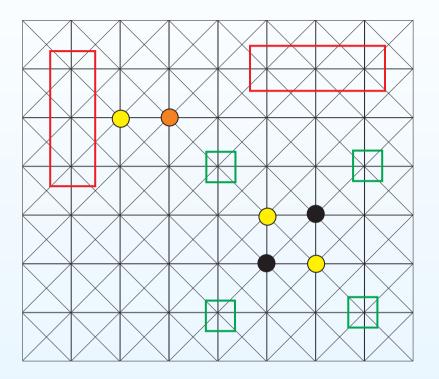
- $V = \mathbb{Z}^2$ and adjacent if $d(x, y) \leq \sqrt{2}$.
- There is a code with density $3/7 \approx 0.4286...$ (Honkala- L.).



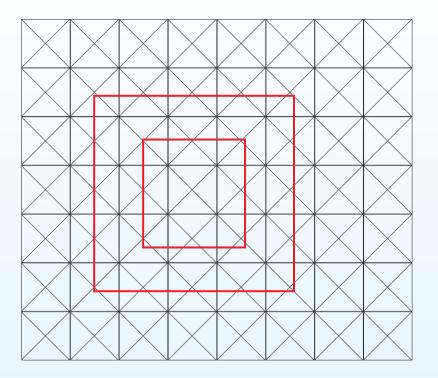
• A lower bound $5/12 \approx 0.4166..$ by M. Pelto (2010).



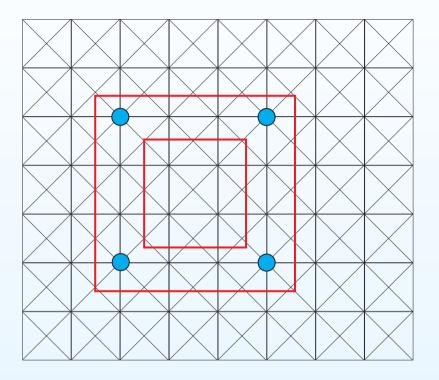
A code C is $(1, \le 2)$ -identifying if and only if the following patterns intersect with C.



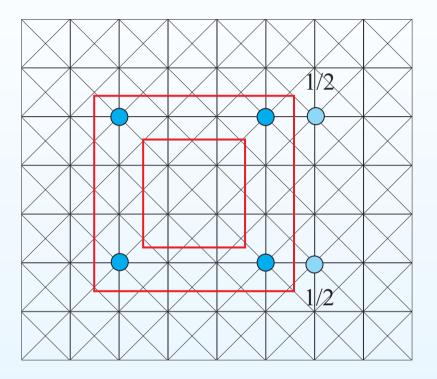
Where do they come from?



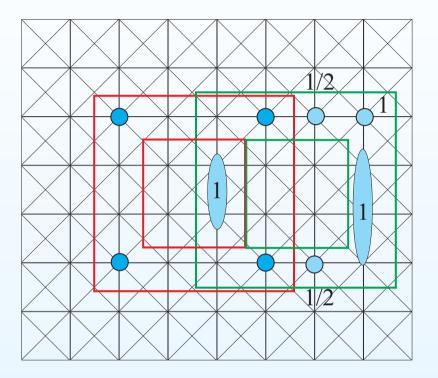
The frame with 12 vertices



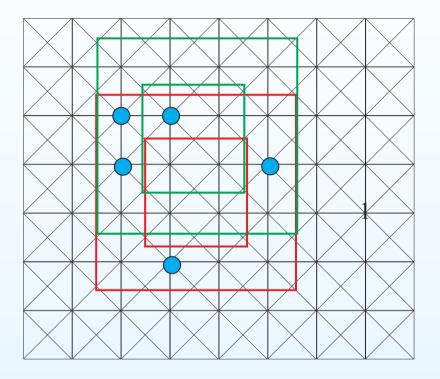
The only way to have exactly 4 codewords



Codewords nearby



A neighbouring 6⁺ -frame



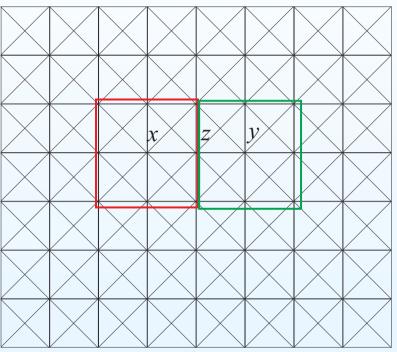
For 5-frame also a neighbouring 6^+ -frame

King grid $\ell = 2$.

- If fact, we can show that there is in average 5 + 3/37 codewords among a 12 frame.
- A $(1, \leq 2)$ -identifying code in the king grid has density at least $47/111 \sim 0.423...$
- Joint work with Foucaud and Parreau (2011)

$\ell=3$ is not possible in king and triangular grid

It is not possible to distinguish between the sets I(x, y) and I(x, y, z).

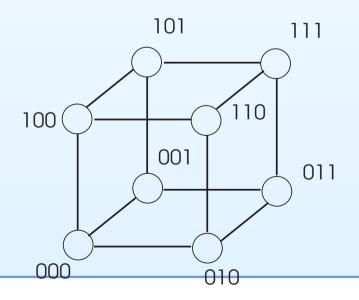


Binary *n*-cube

• If $a \neq b$, then

$$|B_1(a) \cap B_1(b)| = \begin{cases} 2 & \text{if } d(a,b) = 1 \text{ or } 2\\ 0 & \text{otherwise.} \end{cases}$$

- If the intersection of three Hamming spheres of radius one is nonempty, then it consists of a unique point.
- no triangles

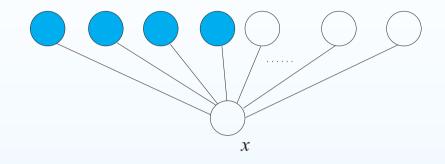


Optimal codes when $\ell \geq 3$

- A subset of vertices *C* is called a μ -fold covering, if $|I(x)| \ge \mu$ for all $x \in V$.
- Let $\ell \geq 3$. A code is $(1, \leq \ell)$ -identifying \Leftrightarrow it is a $(2\ell 1)$ -fold covering.
- (L. 2002) Let $\ell \geq 3$. For an infinite family of n

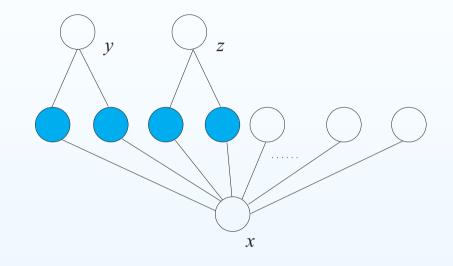
$$M_1^{(\leq \ell)}(n) = (2\ell - 1)\frac{2^n}{n+1}.$$

Outline of the proof $(\ell = 3)$, so $2\ell - 1 = 5$:



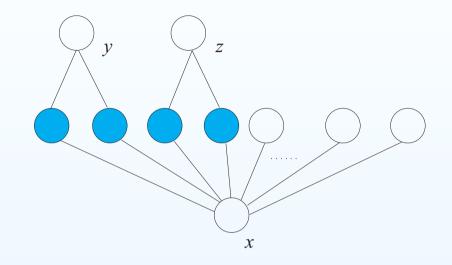
A word covered by $2\ell - 2$ codewords.

Outline of the proof $(\ell = 3)$, so $2\ell - 1 = 5$:



Other words at distance two.

Outline of the proof $(\ell = 3)$, so $2\ell - 1 = 5$:



A violation of the property.

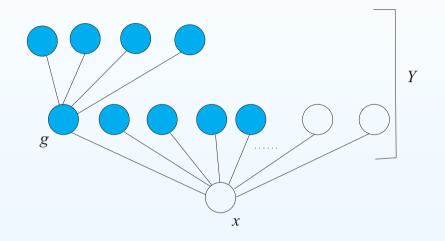
I(y,z) = I(x,y,z)

Outline of the proof: The other direction.

- Suppose C is $(2\ell 1)$ -fold covering.
- We need to show that $I(X) \neq I(Y)$ for any distinct X and Y of size $|X|, |Y| \leq \ell$.
- Assume that $x \in X \setminus Y$.
- If $|Y| \le \ell 1$, then from $2(\ell 1) < 2\ell 1 \le |I(x)|$, it follows that is enough to look at the case $|X| = |Y| = \ell$.

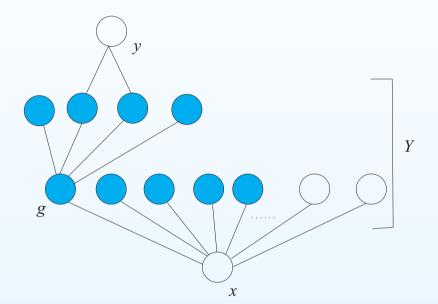
- Now there exists (besides x) also $g \in Y \setminus X$.
- In fact, $1 \le d(x, a) \le 2$ for all $a \in Y$ and $1 \le d(g, b) \le 2$ for all $b \in X$.
- In particular, $1 \le d(x,g) \le 2$.
- We may assume $x = 000 \dots 0$.
- Consider the case d(x,g) = 1.

Let $\ell = 3$, $X = \{x, y, z\}$ and $Y = \{g, h, k\}$.



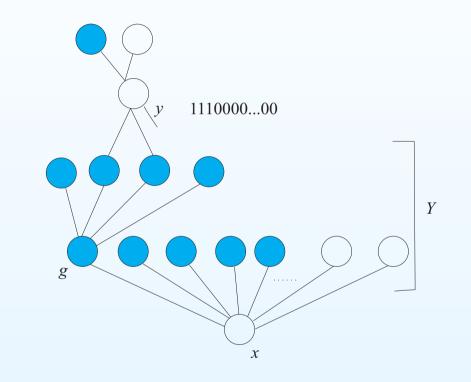
There must be a word y covering exactly two of I(g).

Let $\ell = 3$, $X = \{x, y, z\}$ and $Y = \{g, h, k\}$.



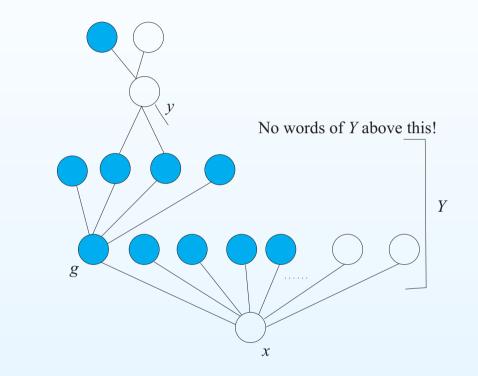
Distance must be three from x.

Let $\ell = 3$, $X = \{x, y, z\}$ and $Y = \{g, h, k\}$.



Codewords at distance four in I(X) .

Let $\ell = 3$, $X = \{x, y, z\}$ and $Y = \{g, h, k\}$.



Codewords at distance four in I(X) but not in I(Y).

- Hence for $\ell \ge 3$, if C is $(2\ell 1)$ -fold covering, we always have $I(X) = I(Y) \Rightarrow X = Y$.
- If $\ell = 2$, it holds again that $(1, \leq 2)$ -identifying code is 3-fold covering.
- However, the other direction is not true.

The case $\ell=2$

• Idea: Optimal initial codes C for n = 5 and n = 7 combined with construction

 $\Pi(C) = \{ (\pi(u), u, u+c) \mid u \in F_2^n, c \in C \} \subseteq F_2^{2n+1}$

where $\pi(u)$ is the parity check bit: $\pi(01100) = 0$ and $\pi(10101) = 1$.

- Two optimal infinite families:
- $M_1^{(\leq 2)}(3 \cdot 2^k 1) = 2^{3 \cdot 2^k k 1}$ for $k \geq 1$
- $M_1^{(\leq 2)}(2^k 1) = 3 \cdot 2^{2^k k 1}$ for $k \geq 3$

Radius r > 1, results on the rate when $\ell = 1$

- $M_r(n)$ denotes the smallest cardinality of an *r*-identifying code of length *n*.
- What is α in $M_r(n) = p(n) \cdot 2^{\alpha n}$?
- Honkala and Lobstein (2002)

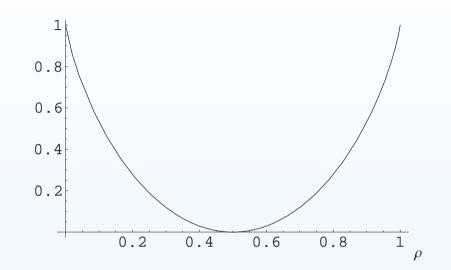
$$\lim_{n \to \infty} \frac{1}{n} \log_2 M_r(n) = 1 - h(\rho)$$

where $r = \lfloor \rho n \rfloor$ and h(x) is the binary entropy function

$$h(x) = -x \log_2 x - (1-x) \log_2(1-x).$$

Independently also found by R. Ahlswede in 2006.

A figure of the optimal rate:



$$\lim_{n \to \infty} \frac{1}{n} \log_2 M_r(n) = 1 - h(\rho)$$

where $r = \lfloor \rho n \rfloor$.

Polynomial size of codes:

Honkala and Lobstein showed that for $n \geq 3$,

$$M_{\lfloor \frac{n}{2} \rfloor}(n) \leq \begin{cases} \frac{n^2 - n + 2}{2}, & n \text{ odd,} \\ \frac{n^2 - 4}{2}, & n \text{ even.} \end{cases}$$

A trivial lower bound:

 $M_r(n) \ge n+1$

for any radius r.

Radius r>1 and $\ell>1$

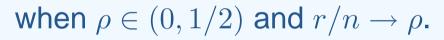
- Let now $\ell > 1$ be fixed.
- What is α in $M_r^{(\leq \ell)}(n) = p(n) \cdot 2^{\alpha n}$?
- Clearly,

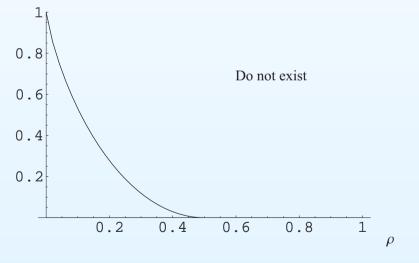
$$\liminf_{n \to \infty} \frac{1}{n} \log_2 M_r^{(\leq \ell)}(n) \ge 1 - h(\rho).$$

Radius r>1 and $\ell>1$

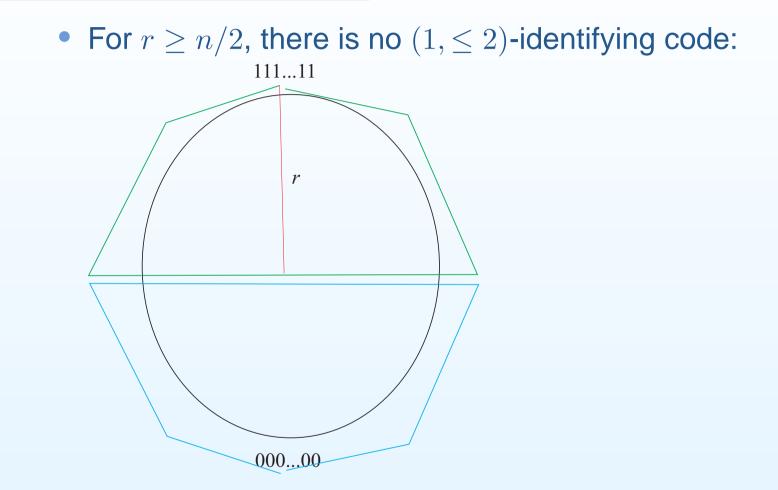
- Janson- L. 2009:
- For any fixed $\ell \ge 1$ we obtain

$$\lim_{n \to \infty} \frac{1}{n} \log_2 M_r^{(\leq \ell)}(n) = 1 - h(\rho)$$





Radius r>1 and $\ell>1$



About the proof:

A random code gives

$$M_r^{(\leq \ell)}(n) \leq 2n\ell \frac{2^n}{m_n(r,\ell)}$$

where

$$m_n(r,\ell) = \min_{X,Y \subseteq \mathbb{F}^n, |X|, |Y| \le \ell} |B_r(X) \triangle B_r(Y)|$$

and \bigtriangleup denotes the symmetric difference.

We are able to show that

$$m_n(r,\ell) \ge c \binom{n}{r}.$$

Polynomial size of codes:

For $\ell \geq 2$ there exists codes with

 $M_r^{(\leq \ell)}(n) \leq A n^{3/2}$

where $r \approx n/2$.

Polynomial size of codes:

For $\ell \geq 2$ there exists codes with

 $M_r^{(\leq \ell)}(n) \leq A n^{3/2}$

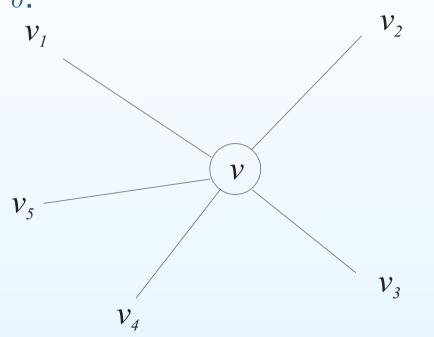
where $r \approx n/2$.

This is not far from the best possible, since

 $M_r^{(\leq \ell)}(n) \gtrsim \ell n.$

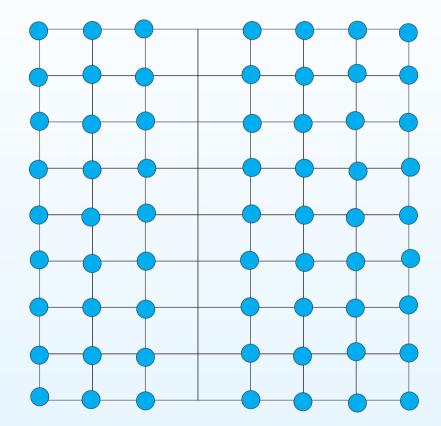
Small $\delta(G)$ do not allow too large ℓ

• Suppose we have a graph, whose minimum degree equals δ .

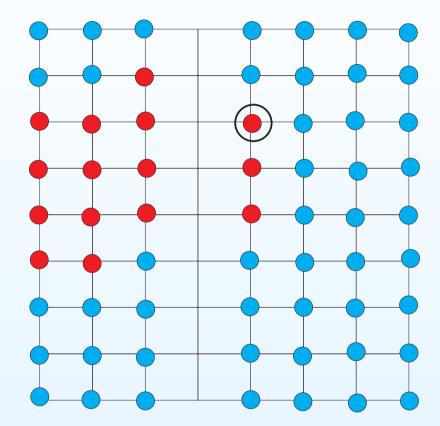


- Clearly, $I(v_1, v_2, ..., v_{\delta}) = I(v_1, v_2, ..., v_{\delta}, v)$, so the graph cannot admit a $(1, \leq \ell)$ -identifying code for $\ell > \delta$.
- Therefore, ℓ is modest for grids. For binary *n*-cube, we have ℓ up to $\lfloor n/2 \rfloor + 1$.

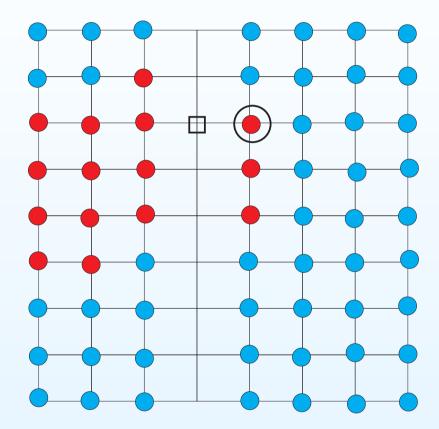
- Suppose we have a finite number of vertices to locate, but there is no a priori upper limit ℓ.
- A dominating code $C \subseteq V$ satisfying the following property is a universally identifying code: Suppose S = I(X) for finite $X \subseteq V$, then for every finite $X' \subseteq V$ such that S = I(X') we have $v_S \in \bigcap X'$.
- Hence, we can determine at least one of the objects, fix it and continue the process.



A universally identifying code in the square grid

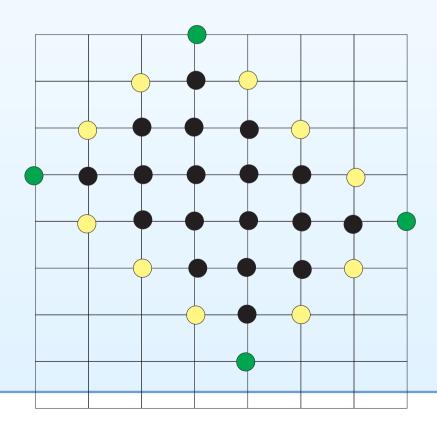


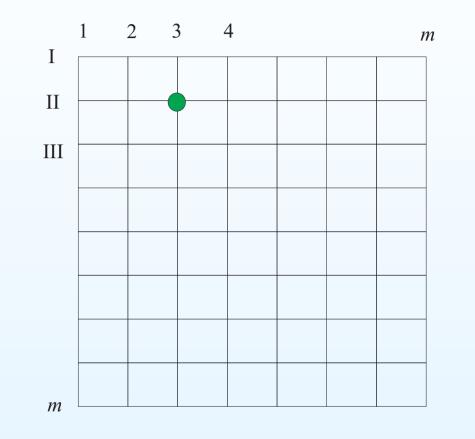
Take the point upper-rightmost point (i, j) of S.



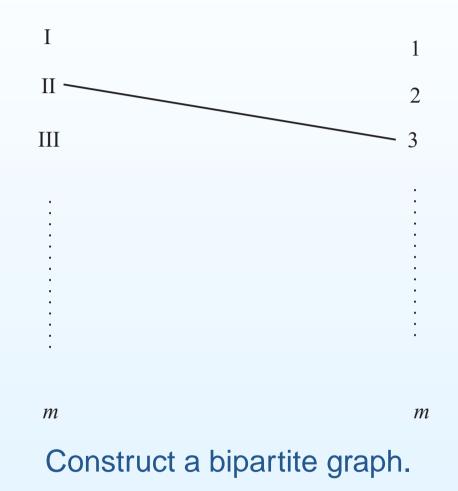
Conclude that (i - 1, j) is always in X when S = I(X).

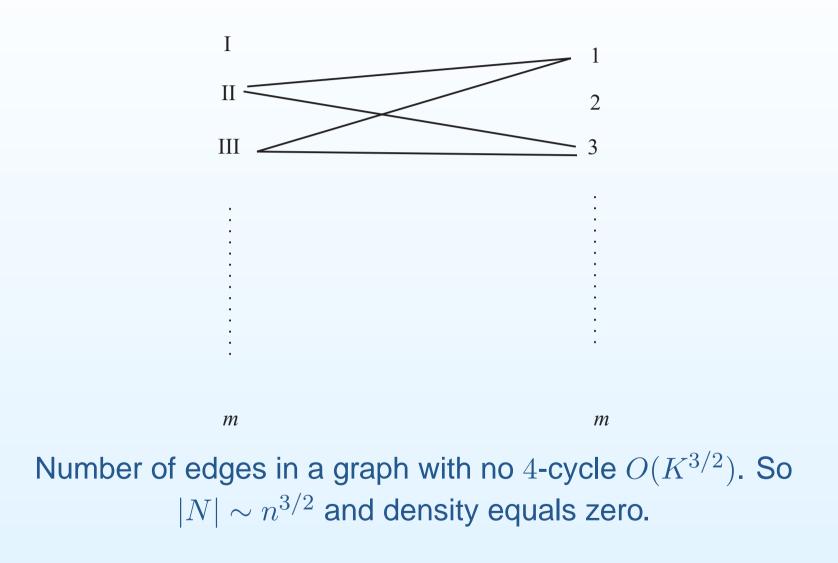
- We cannot do much better than this, density always 1.
- Non-codewords in green, B in black and Y in yellow. Now $I(X) = (B \cup Y) \cap C$ for any X containing all but one of B.
- If there are noncodewords with positive density, then one of such patterns always appears.





Back to the square grid (small cases avoided!)



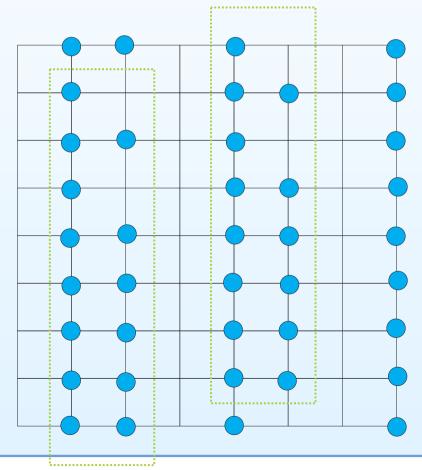


Weakly identifying codes

- We know now an upper limit ℓ and use the process, so that we can determine one by one *F* from I(F).
- A dominating set C ⊆ V is weakly (1, ≤ ℓ)-identifying if it has the property: if S = I(X) for some X ⊆ V such that |X| ≤ ℓ, then for every X', |X'| ≤ ℓ with S = I(X') we have v_S ∈ ∩ X'.
- There is no $(1, \leq \ell)$ -identifying code in the square grid when $\ell \geq 4$.
- There is a weakly $(1, \leq \ell)$ -identifying code in the square grid with density $\ell/(\ell + 1)$ for any ℓ .

Weakly identifying codes

- Optimal density for usual $(1, \leq 3)$ -identifying code in the square grid equals 1.
- A weakly $(1, \leq 3)$ -identifying code of density 7/12.



From ID to LD

- Locating-dominating sets (P. Slater) are closely related to identifying codes.
- $C \subseteq V$ is a *r*-locating-dominating set if $I_r(x)$ is nonempty for all $x \in V \setminus C$ and

 $I_r(x) \neq I_r(y)$

for any $x \neq y$ where $x, y \in V \setminus C$.

• How to generalize the concept to higher ℓ ?

Generalizing locating-dominating sets

• $C \subseteq V$ is $(r, \leq \ell)$ -LDB if

 $I_r(X) \neq I_r(Y)$

for all $X, Y \subseteq V \setminus C$, $X \neq Y$, $|X|, |Y| \leq \ell$.

Generalizing locating-dominating sets

• $C \subseteq V$ is $(r, \leq \ell)$ -LDA if

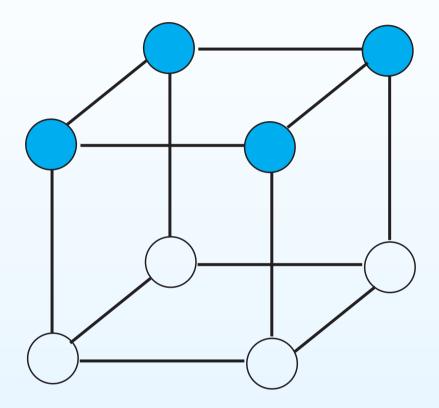
 $I_r(X) \neq I_r(Y)$

or

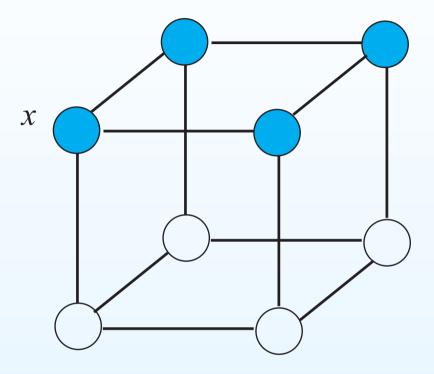
$$X \cap C \neq Y \cap C$$

for all $X, Y \subseteq V$, $X \neq Y$, $|X|, |Y| \leq \ell$.

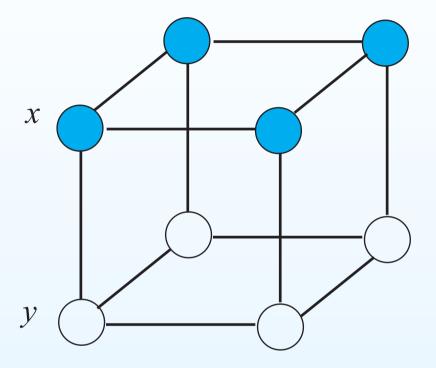
• Both are LD-sets if $\ell = 1$.



 $(1, \leq 4)$ -LDB set in a hypercube



not a $(1, \leq 2)$ -LDA set



Now I(x) = I(x, y) and $\{x\} \cap C = \{x, y\} \cap C$

- (1, ≤ ℓ)-LDA is not (1, ≤ ℓ)-identifying, but some similarities exist (Honkala-L.-Ranto 2004):
- In a hypercube any non-codeword is covered by $(2\ell 1)$ vertices of $(1, \leq \ell)$ -LDA, i.e. the optimal size

$$M \sim \frac{2\ell - 1}{n} 2^n.$$

• For $(1, \leq \ell)$ -LDB the optimal size is

$$M = 2^{n-1}$$

for $\ell \ge (\sqrt{2^n + 2n + 1} - 1)/2$.

- Consider cycles (Exoo-Junnila-L.,2010):
- There is only trivial $(r, \leq \ell)$ -LDA set when $\ell \geq 3$
- The size of optimal $(r, \leq 2)$ -LDA is

$$\gcd(r,n) \left\lfloor \frac{n}{2 \gcd(r,n)} \right\rfloor$$

• The size of optimal $(r, \leq \ell)$ -LDB is

$$\left\lfloor \frac{rn}{r+1} \right\rfloor$$

for $\ell \geq 3$, $n \geq 2r+2$ and $n \not\equiv r+1 \mod 2r+2$.

Thank you!