Structural properties of identifying codes: some results, conjectures and open problems

Olivier Hudry

Télécom ParisTech

hudry@enst.fr

BWIC 2011

with D. Auger, I. Charon, I. Honkala, A. Lobstein

Synthesis of five articles dealing with structural properties of identifying codes

- I. Charon, I. Honkala, O. Hudry, A. Lobstein, Structural Properties of Twin-Free Graphs, *Elec. J. of Comb.* 14 (1), R 16, 2007.
- D. Auger, Induced paths in twin-free graphs, *Elec. J. of Comb.* 15 (1), N 17, 2008.
- D. Auger, I. Charon, O. Hudry, A. Lobstein, On the existence of a cycle of length at least 7 in a (1, <= 2)-twin-free graph, *Discussiones Mathematicae-Graph Theory* 30, 2010, 591-609.
- I. Charon, O. Hudry, A. Lobstein, Minimum sizes of identifying codes in graphs differing by one vertex, submitted.
- I. Charon, O. Hudry, A. Lobstein, Minimum sizes of identifying codes in graphs differing by one edge, submitted.

Definitions and notation

- *G* = (*X*, *E*) will denote an undirected graph, *n* will denote the number of vertices of *G* and *r* will denote a positive integer.
- For x in X, $B_r(x)$ denotes the *ball* of radius r and centre x:

$$B_r(x) = \{y \in X \text{ s.t. } d(x, y) \le r\},\$$

where d(x, y) is the length of a shortest path between x and y in G.

Two vertices x and y are said to be *r-twins* if they own the same ball: B_r(x) = B_r(y). If there is no *r*-twins in G, then G is said to be *r-twin-free*.

- A subset *C* of *G* is an *r*-identifying code (*r*-IC) of *G* if:
 ∀ (x, y) ∈ X² with x ≠ y, Ø ≠ B_r(x) ∩ C ≠ B_r(y) ∩ C ≠ Ø.
 Then *G* is said to be *r*-identifiable.
- **Theorem**: *G* is *r*-identifiable if and only if *G* is *r*-twinfree. In this case, *C* = *X* is an *r*-IC of *G*.
- **Problem**: when *G* is *r*-identifiable, determine an *r*-IC of *G* of minimum size.
- The size of a minimum *r*-IC of *G* is denoted by $M_r(G)$.

• On the right, $C = \{a, b, c, d, e\}$ is a minimum 2-IC: $M_r(C_6) = 5$.

FIFCO

Paristec

Generalization to $(r, \leq l)$ -identifying codes

• Given a graph G = (X, E) and a subset Y of X, we set:

 $B_r(Y) = \bigcup \{B_r(y) \text{ for } y \in Y\}.$

A subset C of X is said to be an (r, ≤ l)-identifying code if we have, for any pair of distinct subsets Y and Z with |Y| ≤ l and |Z| ≤ l:

 $\emptyset \neq B_r(Y) \cap C \neq B_r(Z) \cap C \neq \emptyset.$

• Two subsets *Y* and *Z* are said to be $(r, \leq l)$ -twins if we have $|Y| \leq l$, $|Z| \leq l$, $Y \neq Z$ and $B_r(Y) = B_r(Z)$. If there is no $(r, \leq l)$ -twins in *G*, then *G* is said to be $(r, \leq l)$ -twin-free.

Outline

- I. Unavoidable subgraphs in twin-free graphs
- II. *r*-terminal graphs
- III. Variations of $M_r(G)$ when a vertex is deleted (or added)
- IV. Variations of $M_r(G)$ when an edge is deleted (or added)

- edge contains P_{2r+1} as an **induced** subgraph.
- Corollary (J. Moncel, PhD thesis, 2005): any *r*-twinfree graph with at least one edge contains at least 2r + 1 vertices.
- In fact, P_{2r+1} is the unique *r*-twin-free connected graph with 2r + 1 vertices.

What about unavoidable subgraphs in $(1, \le 2)$ twin-free graphs?

• Let C_k denote the cycle with k vertices:

It is said to be *elementary* if it does not go through a same vertex twice.

- Theorem: any (1, ≤ 2)-twin-free graph with at least two vertices contains an elementary cycle C_k with k ≥ 7 (not necessarily as an induced subgraph).
- Corollary: any (1, ≤ 2)-twin-free graph contains at least 7 vertices.

Example of a $(1, \leq 2)$ twin-free graph

The graph below is (1, ≤ 2)-twin-free and contains C₁₀ as a subgraph, but its largest chordless cycle is C₆.

• Conjectures.

- 1. For any integer $r \ge 2$, the smallest connected ($r, \le 2$)-twin-free graph with at least two vertices is the cycle C_{4r+3} .
- 2. Any $(r, \leq 2)$ -twin-free graph with at least two vertices contains a cycle of length at least 4r + 3.
- **Open problem**: what about similar results for $(r, \le l)$ -twin-free graphs with l > 2?
- **Remark**: T. Laihonen (EuJC, 2008) gives a connected $(1, \le 3)$ -twin-free graph with 16 vertices.

II. *r*-terminal graphs

- Let G = (X, E) be a connected *r*-twin-free graph with at least 2 vertices; G is said to be *r*-terminal if, for any vertex x of G, G_x = G {x} is not *r*-twin-free.
- Or: *G* is *not r-terminal* if there exists a vertex *x* of *G* such that G_x is *r*-twin-free.
- For instance, P_{2r+1} is *r*-terminal for any r > 1.
- **Problem**: what are the *r*-terminal graphs? For r > 1, is P_{2r+1} the only *r*-terminal graph?

The case r = 1

• **Theorem**: there is no 1-terminal graph.

The proof is based on the following theorem:

- Theorem (N. Bertrand, 2001; S. Gravier, J. Moncel, 2007; I.C., O.H., A.L., 2007; ...): let *G* be any connected 1-twin-free graph with *n* ≥ 3 vertices. Then *M*₁(*G*) ≤ *n* − 1.
- Remark: the graphs G with M₁(G) = n 1 are all known (F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau, P. Valicov, EuJC 2011).

There does not exist 1-terminal graph: proof

If n = 3, then G = P₃, which is not terminal since we may remove the middle vertex while keeping a 1-twin-free graph:

If n > 3, let C be a 1-IC of size n − 1 and choose x s.t.
 X − C = {x}. Then C is still a 1-IC of G_x, because removing x does not cut connexions between pairs of vertices not containing x. Thus G_x is 1-twin-free. TELECOM

Example

The graph below is 1-twin-free and C = X - {x} is a 1-IC. Then G_x is 1-twin-free (though not connected).

More precisely, we have:

• **Theorem**: Let $n \ge 4$ and *G* be any connected 1-twinfree graph with *n* vertices. Then there is a vertex *x* such that G_x is 1-twin-free and connected.

Example

• The graph below is 1-twin-free and $C = X - \{f\}$ is a 1-IC. Then G_f is 1-twin-free and connected.

The case $r \ge 3$

• **Theorem**: for each integer $r \ge 3$, there is a graph *G* which is *r*-terminal with $G \ne P_{2r+1}$.

• Ex.:
$$r = 3, n = 4r - 1$$
.

The case $r \ge 6$

• **Theorem**: for each integer *r* ≥ 6, there are infinitely many *r*-terminal graphs *G*.

Open problems

- For r = 2, is P_5 the only 2-terminal graph?
- For 3 ≤ r ≤ 5, there exist *r*-terminal graphs, but are they in finite or infinite number?

The case of trees

- Theorem: let r ≥ 1 and n ≥ 2r + 2 be integers, and T
 be any *r*-twin-free tree with n vertices. Then there
 exists a leaf x s.t. T_x = T {x} is r-twin-free.
- Corollary:
 - 1. there is no 1-terminal tree;
 - 2. for r > 1, the only *r*-terminal tree is P_{2r+1} .

III. Variations of M(G) when a vertex is added or deleted

• D. Roberts and F. Roberts (EuJC 2008) observed that removing a vertex from a cycle may increase *M*₂ by 1.

- **Problem**: what are the maximum variations of $M_r(G)$ when a vertex is added or deleted?
- More specifically, for any vertex *x* of *G*, we set $G_x = G - \{x\}$. We study the quantities $|M_r(G) - M_r(G_x)|$ and, when appropriate, $M_r(G)/M_r(G_x)$ (or, equivalently, $M_r(G_x)/M_r(G)$).

The case r = 1

Removing a vertex cannot involve a large decrease of M_1 :

• **Theorem**: Let *G* be any 1-twin-free graph. For any vertex *x* of *G* s.t. *G_x* is 1-twin-free, we have:

 $M_1(G_x) \ge M_1(G) - 1$

(see also F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau, P. Valicov, EuJC 2011 for a stronger result).

The case r = 1

Removing a vertex may involve a large increase of M_1 :

• **Theorem**: There exists a (connected) graph *G* with *n* vertices and a vertex *x* of *G* with:

$$M_1(G_x) - M_1(G) = (n-6)/4 \approx n/4$$

- and $M_1(G_x)/M_1(G) = (3n-6)/2n \approx 3/2.$
- **Open problem**: can we do better?
- **Conjecture**: For any graph G, $M_1(G_x)/M_1(G) \le 3/2$.

Removing a vertex may involve a large decrease of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* with *n* vertices and a vertex *x* of *G* with:

$$M_r(G) - M_r(G_x) = [(n - 3r)(r - 1) + 1]/r \approx n(r - 1)/r$$

and $M_r(G)/M_r(G_x) = r(n-r)/(n+2r^2-3r-1) \approx r$.

- **Open problem**: can we do better?
- **Conjecture**: For any graph *G* and any integer $r \ge 2$,

$$M_r(G)/M_r(G_x) \leq r.$$

Proof

The case $r \ge 2$, *r* even, G_x connected

Removing a vertex may involve a large increase of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* with *n* + 1 vertices and a vertex *x* of *G* with:

$$M_r(G_x) - M_r(G) \ge n/4 - (r+1) \approx n/4$$

- and $M_r(G_x)/M_r(G) = 2n/(n+4r+4) \approx 2$.
- **Open problem**: can we do better?
- **Conjecture**: For any connected graph *G* and any even integer $r \ge 2$, $M_r(G_x)/M_r(G) \le 2$.

Example: *G* for r = 6 and n = 48

The case $r \ge 3$, r odd, G_x connected

Removing a vertex may involve a large increase of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* with *n* + 1 vertices and a vertex *x* of *G* with:

$$M_r(G_x) - M_r(G) \ge n(3r-1)/12r - r \approx n/4$$

and $M_r(G_x)/M_r(G) = \frac{6nr}{[n(3r+1) + 12r^2]} \approx \frac{6r}{(3r+1)}$.

- **Open problem**: can we do better?
- **Conjecture**: For any connected graph *G* and any odd integer $r \ge 3$, $M_r(G_x)/M_r(G) \le 2$.

The case $r \ge 2$, G_x disconnected

Removing a vertex may involve a larger increase of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* with *n* + 1 vertices and a vertex *x* of *G* with:

 $M_r(G_x) - M_r(G) \ge n(2r-2)/(2r+1) - 2r \approx n$

- and $M_r(G_x)/M_r(G) = nr/(n + 4r^2 + 2r) \approx r$.
- **Open problem**: can we do better?
- **Conjecture**: For any graph *G* and any integer $r \ge 2$, $M_r(G_x)/M_r(G) \le r$.

Proof: G_x is made of k copies of P_{2r+1}

 $M_r(G) = 2(r+k)$

 $M_r(G_x) = 2kr = n - n/(2r + 1)$

IV. Variations of M(G) when an edge is added or deleted

- **Problem**: what are the maximal variations of $M_r(G)$ when an edge is added or deleted?
- More specifically, for any edge *e* of *G*, we set
 G_e = *G* {*e*}. We study the quantities

 $|M_r(G) - M_r(G_e)|.$

The case r = 1

Removing an edge cannot involve a large decrease or a large increase of M_1 :

• **Theorem**: Let *G* be any 1-twin-free graph. For any edge *e* of *G* s.t. *G_e* is 1-twin-free, we have:

 $M_1(G) - 2 \le M_1(G_e) \le M_1(G) + 2.$

The case $r \ge 2$

Removing an edge may involve a large decrease of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* and an edge *e* of *G* with:

 $M_r(G) - M_r(G_e) = r$

- **Open problem**: can we do better?
- **Conjecture**: For any graph *G* and any integer $r \ge 2$,

 $M_r(G) - M_r(G_e) \leq r.$

The case $r \ge 2$, G_e connected

Removing an edge may involve a large increase of M_r :

• **Theorem**: There exists a connected and *r*-twin-free graph *G* and an edge *e* of *G* with:

 $M_r(G_e) - M_r(G) \ge r - 1.$

- **Open problem**: can we do better?
- **Conjecture**: For any connected graph *G* and any even integer $r \ge 2$, $M_r(G_e) M_r(G) \le r$.

The case $r \ge 2$, G_e disconnected

Removing a vertex may involve a larger increase of M_r :

• **Theorem**: There exists an *r*-twin-free graph *G* and an edge *e* of *G* with:

$$M_r(G_e) - M_r(G) \ge 2r - 3.$$

- **Open problem**: can we do better?
- **Conjecture**: For any graph *G* and any integer $r \ge 2$, $M_r(G_e) - M_r(G) \le 2r$.

Proof based on the following graph:

Thank you for your attention 🙂 !

References

- I. Charon, I. Honkala, O. Hudry, A. Lobstein, Structural Properties of Twin-Free Graphs, *Elec. J. of Comb.* 14 (1), R 16, 2007.
- D. Auger, Induced paths in twin-free graphs, *Elec. J. of Comb.* 15 (1), N 17, 2008.
- D. Auger, I. Charon, O. Hudry, A. Lobstein, On the existence of a cycle of length at least 7 in a (1, <= 2)-twin-free graph, *Discussiones Mathematicae-Graph Theory* 30, 2010, 591-609.
- I. Charon, O. Hudry, A. Lobstein, Minimum sizes of identifying codes in graphs differing by one vertex, submitted.
- I. Charon, O. Hudry, A. Lobstein, Minimum sizes of identifying codes in graphs differing by one edge, submitted.