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Definitions and notation

� G = (X, E) will denote an undirected graph, n will denote the 

number of vertices of G and r will denote a positive integer.

� For x in X, Br(x) denotes the ball of radius r and centre x:

Br(x) = {y ∈ X s.t. d(x, y) ≤ r},

whered(x, y) is the length of a shortest path betweenx and y in G.

� Two verticesx and y are said to ber-twins if they own the same

ball: Br(x) = Br(y). If there is no r-twins in G, thenG is said to 

ber-twin-free.



� A subsetC of G is an r-identifying code (r-IC) of G if:

∀ (x, y) ∈ X2 with x ≠ y, ∅ ≠ Br(x) ∩ C ≠ Br(y) ∩ C ≠ ∅. 

ThenG is said to ber-identifiable.

� Theorem: G is r-identifiable if and only if G is r-twin-

free. In this case, C = X is an r-IC of G.

� Problem: whenG is r-identifiable, determine an r-IC

of G of minimum size.

� The size of a minimum r-IC of G is denoted by Mr(G).



Example

� On the left, a and c are 2-twins: B2(a) = B2(c).

� On the right, C = {a, b, c, d, e} is a minimum 

2-IC: Mr(C6) = 5.
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Generalization to (r, ≤ l)-identifying codes

� Given a graph G = (X, E) and a subsetY of X, we set:

Br(Y) = ∪ { Br(y) for y ∈ Y}.

� A subsetC of X is said to be an (r, ≤ l)-identifying code 
if we have, for any pair of distinct subsetsY and Z with
|Y| ≤ l and |Z| ≤ l:

∅ ≠ Br(Y) ∩ C ≠ Br(Z) ∩ C ≠ ∅.

� Two subsetsY and Z are said to be (r, ≤ l)-twins if we
have |Y| ≤ l, |Z| ≤ l, Y ≠ Z and Br(Y) = Br(Z). If there is no 
(r, ≤ l)-twins in G, thenG is said to be (r, ≤ l)-twin-free.



I. Unavoidable subgraphs in twin-free graphs

II. r-terminal graphs

III. Variations of Mr(G) when a vertex is deleted
(or added)

IV. Variations of Mr(G) when an edge is deleted
(or added)

Outline



� Let Pk denote the path withk vertices:

I. Unavoidable subgraphs in twin-free graphs

� Theorem: anyr-twin-free graph with at least one 

edge containsP2r+1 as an induced subgraph.

� Corollary (J. Moncel, PhD thesis, 2005): anyr-twin-

free graph with at least one edge contains at least 

2r + 1 vertices.

� In fact, P2r+1 is the unique r-twin-free 

connected graph with 2r + 1 vertices.



� Let Ck denote the cycle withk vertices:

What about unavoidable subgraphs
in (1, ≤ 2) twin-free graphs?

It is said to beelementary if it does not go through a 

same vertex twice.

� Theorem: any (1, ≤ 2)-twin-free graph with at least 

two vertices contains an elementary cycle Ck with

k ≥ 7 (not necessarily as an induced subgraph).

� Corollary: any (1, ≤ 2)-twin-free graph contains at

least 7 vertices.



Example of a (1, ≤ 2) twin-free graph

� The graph below is (1, ≤ 2)-twin-free and contains C10 as 

a subgraph, but its largest chordless cycle is C6.



� Conjectures. 

1. For any integerr ≥ 2, the smallest connected
(r, ≤ 2)-twin-free graph with at least two vertices is the 
cycle C4r+3.

2. Any (r, ≤ 2)-twin-free graph with at least two vertices
contains a cycle of length at least 4r + 3.

� Open problem: what about similar results for 
(r, ≤ l)-twin-free graphs withl > 2?

� Remark: T. Laihonen (EuJC, 2008) gives a connected
(1, ≤ 3)-twin-free graph with 16 vertices.



II. r-terminal graphs

� Let G = (X, E) be a connectedr-twin-free graph with

at least 2 vertices; G is said to ber-terminal if, for 

any vertex x of G, Gx = G – {x} is not r-twin-free. 

Or: G is not r-terminal if there exists a vertex x of G

such thatGx is r-twin-free.

� For instance, P2r+1 is r-terminal for anyr > 1.

� Problem: what are the r-terminal graphs? For r > 1, 

is P2r+1 the onlyr-terminal graph?



The case r = 1

� Theorem: there is no 1-terminal graph.

The proof is based on the following theorem:

� Theorem (N. Bertrand, 2001; S. Gravier, J. Moncel, 

2007; I.C., O.H., A.L., 2007; …): let G be any

connected 1-twin-free graph withn ≥ 3 vertices. 

ThenM1(G) ≤ n – 1.

� Remark: the graphs G with M1(G) = n – 1 are all 

known (F. Foucaud, E. Guerrini, M. Kovše, R. 

Naserasr, A. Parreau, P. Valicov, EuJC 2011).



There does not exist 1-terminal graph: proof

� If n = 3, thenG = P3, which is not terminal since we

may remove the middle vertex while keeping a 1-twin-

free graph:

becomes

� If n > 3, let C be a 1-IC of size n – 1 and choosex s.t. 

X – C = {x}. ThenC is still a 1-IC of Gx, because

removingx does not cut connexions between pairs of 

vertices not containingx. ThusGx is 1-twin-free.



Example

� The graph below is 1-twin-free and C = X – {x} is

a 1-IC. ThenGx is 1-twin-free (though not connected).
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More precisely, we have:

� Theorem: Let n ≥ 4 and G be any connected 1-twin-

free graph withn vertices. Then there is a vertexx

such thatGx is 1-twin-free and connected.



Example

� The graph below is 1-twin-free and C = X – { f} is

a 1-IC. ThenGf is 1-twin-free and connected.
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The case r ≥ 3

� Theorem: for each integerr ≥ 3, there is a graph G

which isr-terminal withG ≠ P2r+1.

� Ex.: r = 3, n = 4r – 1.

� Question: is there a finite number of such graphs?



The case r ≥ 6

� Theorem: for each integerr ≥ 6, there are infinitely

manyr-terminal graphs G.

C2r C2r C2r



Open problems

� For r = 2, isP5 the only 2-terminal graph?

� For 3 ≤ r ≤ 5, there existr-terminal graphs, but are 

they in finite or infinite number?



The case of trees

� Theorem: let r ≥ 1 and n ≥ 2r + 2 be integers, and T

be anyr-twin-free tree withn vertices. Then there

exists a leafx s.t. Tx = T – {x} is r-twin-free.

� Corollary:

1. there is no 1-terminal tree; 

2. for r > 1, the onlyr-terminal tree isP2r+1.



III. Variations of M(G) when a vertex 
is added or deleted

� D. Roberts and F. Roberts (EuJC 2008) observed that

removing a vertex from a cycle may increaseM2 by 1.

M2(C7) = 4

M2(P6) = 4



� Problem: what are the maximum variations of Mr(G) 

when a vertex is added or deleted?

� More specifically, for any vertex x of G, we set 

Gx = G – {x}. We study the quantities |Mr(G) – Mr(Gx)| 

and, when appropriate, Mr(G)/Mr(Gx) (or, equivalently, 

Mr(Gx)/Mr(G)).



The case r = 1

Removing a vertex cannot involve a large decrease of M1:

� Theorem: Let G be any 1-twin-free graph. For any

vertex x of G s.t. Gx is 1-twin-free, we have:

M1(Gx) ≥ M1(G) – 1

(see also F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, 

A. Parreau, P. Valicov, EuJC 2011 for a stronger

result).



The case r = 1

Removing a vertex may involve a large increase of M1: 

� Theorem: There exists a (connected) graph G with n 

vertices and a vertex x of G with:

M1(Gx) – M1(G) = (n – 6)/4 ≈ n/4 

and M1(Gx)/M1(G) = (3n – 6)/2n ≈ 3/2.

� Open problem: can we do better?

� Conjecture: For any graph G, M1(Gx)/M1(G) ≤ 3/2.



Proof

M1(G) = 7

to every vertex

x

M1(Gx) = 9 = M1(G) + (14 – 6)/4

to every vertex



The case r ≥ 2

Removing a vertex may involve a large decrease of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G with n vertices and a vertex x of G with:

Mr(G) – Mr(Gx) = [(n – 3r)(r – 1) + 1]/r ≈ n(r – 1)/r

and Mr(G)/Mr(Gx) = r(n – r)/(n + 2r2 – 3r – 1) ≈ r.

� Open problem: can we do better?

� Conjecture: For any graph G and any integerr ≥ 2,

Mr(G)/Mr(Gx) ≤ r.



Proof

Mr(G) = r(p – 1) + 1

x

Mr(Gx) = p + 2r – 3
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The case r ≥ 2, r even, Gx connected

Removing a vertex may involve a large increase of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G with n + 1 vertices and a vertex x of G with:

Mr(Gx) – Mr(G) ≥ n/4 – (r + 1) ≈ n/4 

and Mr(Gx)/Mr(G) = 2n/(n + 4r + 4) ≈ 2.

� Open problem: can we do better?

� Conjecture: For any connected graph G and any

even integerr ≥ 2, Mr(Gx)/Mr(G) ≤ 2.



Example: G for r = 6 and n = 48

M6(G) = 19 M6(Gx) = M6(C48) = 24

x



The case r ≥ 3, r odd, Gx connected

Removing a vertex may involve a large increase of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G with n + 1 vertices and a vertex x of G with:

Mr(Gx) – Mr(G) ≥ n(3r – 1)/12r – r ≈ n/4 

and Mr(Gx)/Mr(G) = 6nr/[n(3r + 1) + 12r2] ≈ 6r/(3r + 1).

� Open problem: can we do better?

� Conjecture: For any connected graph G and any odd

integerr ≥ 3, Mr(Gx)/Mr(G) ≤ 2.



The case r ≥ 2, Gx disconnected

Removing a vertex may involve a larger increase of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G with n + 1 vertices and a vertex x of G with:

Mr(Gx) – Mr(G) ≥ n(2r – 2)/(2r + 1) – 2r ≈ n

and Mr(Gx)/Mr(G) = nr/(n + 4r2 + 2r) ≈ r.

� Open problem: can we do better?

� Conjecture: For any graph G and any integerr ≥ 2, 

Mr(Gx)/Mr(G) ≤ r.



Proof: Gx is made of k copies of P2r+1

Mr(G) = 2(r + k) 

x

Mr(Gx) = 2kr = n – n/(2r + 1)

Gxr + 11 2r + 1



IV. Variations of M(G) 
when an edge is added or deleted

� Problem: what are the maximal variations of Mr(G) 

when an edge is added or deleted?

� More specifically, for any edgee of G, we set 

Ge = G – {e}. We study the quantities

|Mr(G) – Mr(Ge)|.



The case r = 1

Removing an edge cannot involve a large decrease or a 

large increase of M1:

� Theorem: Let G be any 1-twin-free graph. For any

edgee of G s.t. Ge is 1-twin-free, we have:

M1(G) – 2 ≤ M1(Ge) ≤ M1(G) + 2.



The case r ≥ 2

Removing an edge may involve a large decrease of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G and an edgee of G with:

Mr(G) – Mr(Ge) = r

� Open problem: can we do better?

� Conjecture: For any graph G and any integerr ≥ 2,

Mr(G) – Mr(Ge) ≤ r.



Proof

Mr(G) = r(p – 1) + 1

e

Mr(Gx) = Mr(Gx) – r
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The case r ≥ 2, Ge connected

Removing an edge may involve a large increase of Mr: 

� Theorem: There exists a connected and r-twin-free 

graph G and an edgee of G with:

Mr(Ge) – Mr(G) ≥ r – 1.

� Open problem: can we do better?

� Conjecture: For any connected graph G and any

even integerr ≥ 2, Mr(Ge) – Mr(G) ≤ r.



The case r ≥ 2, Ge disconnected

Removing a vertex may involve a larger increase of Mr: 

� Theorem: There exists an r-twin-free graph G and an 

edgee of G with:

Mr(Ge) – Mr(G) ≥ 2r – 3.

� Open problem: can we do better?

� Conjecture: For any graph G and any integerr ≥ 2, 

Mr(Ge) – Mr(G) ≤ 2r.



e

G
1 r r 1

Proof based on the following graph:



Thank you for your attention ☺ !
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