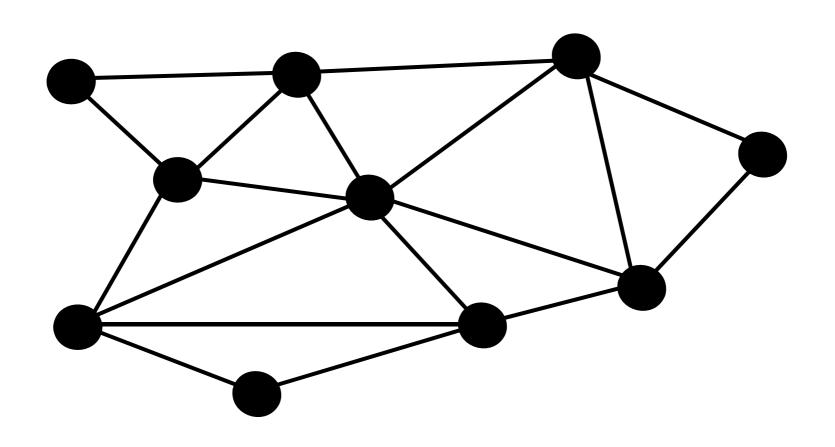
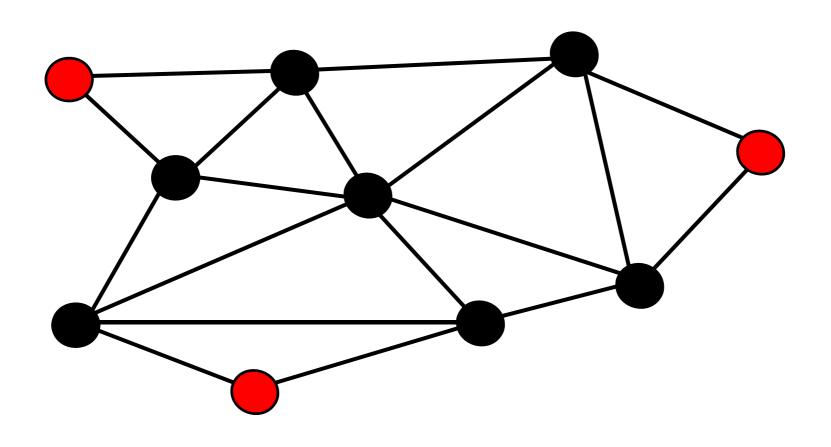
Counting resolving sets in graphs

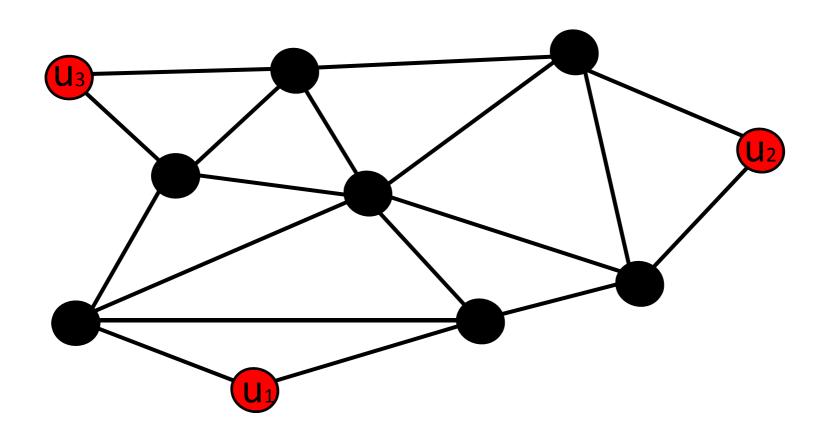
Antonio González

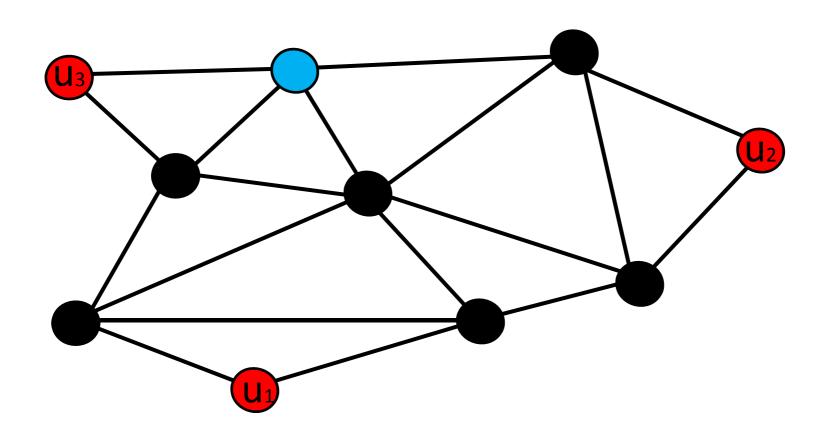
University of Seville

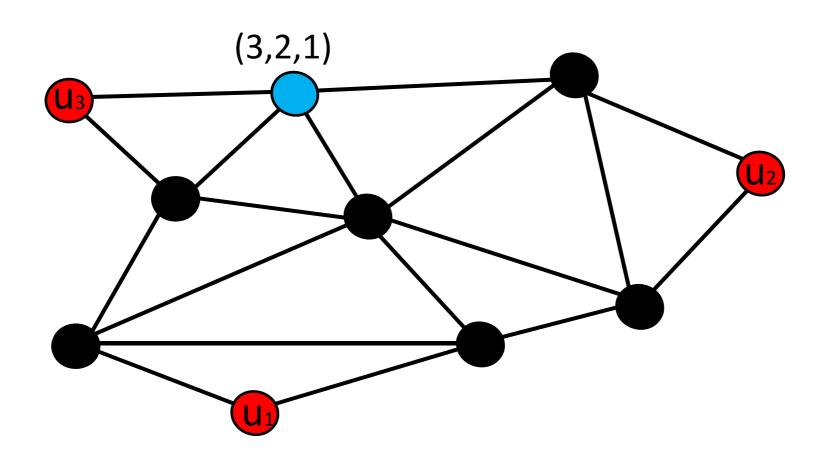
Joint work with D. Garijo and A. Márquez

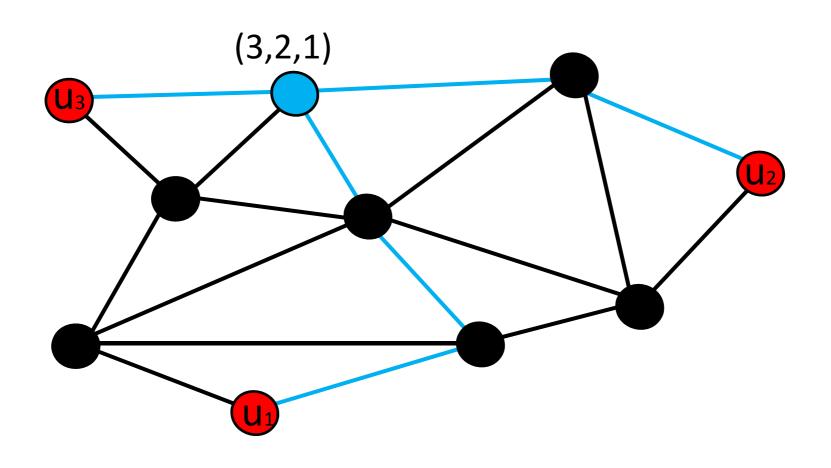


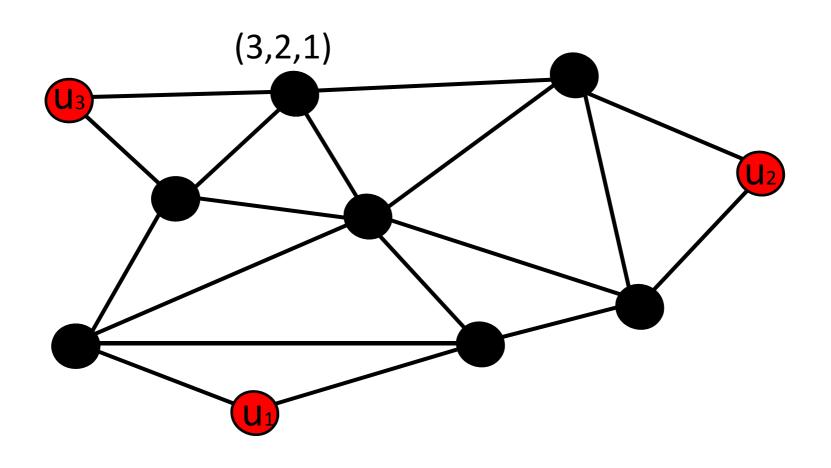


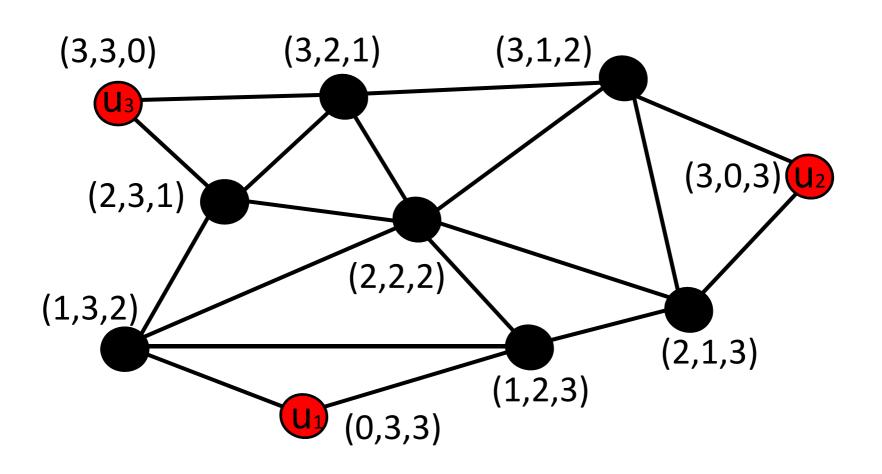


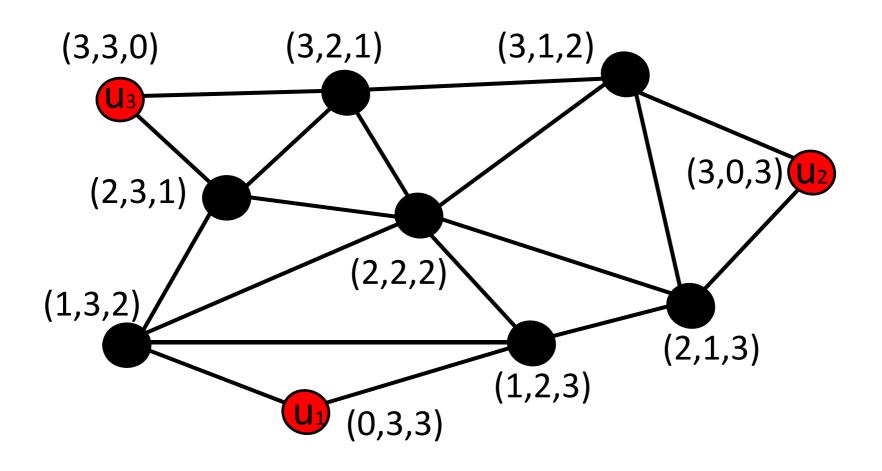


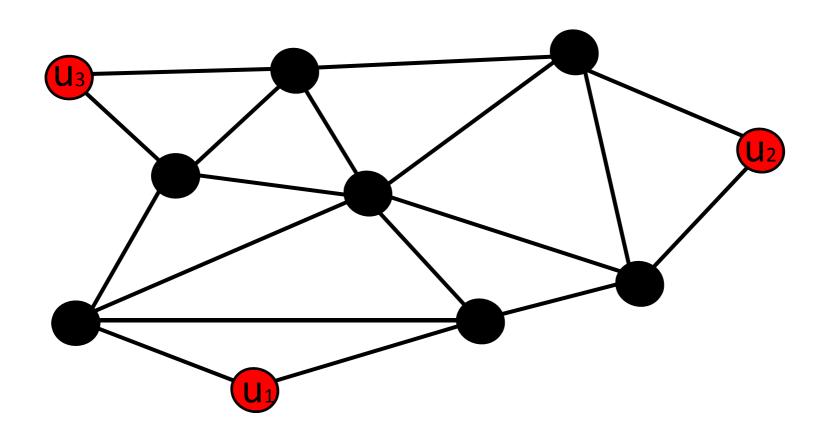


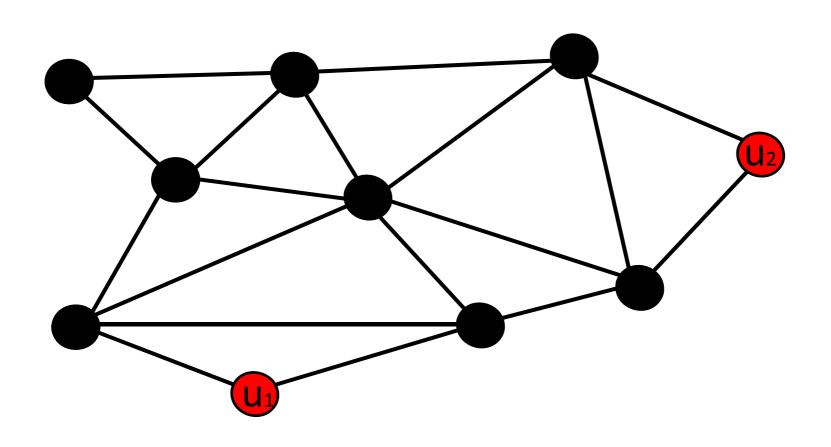


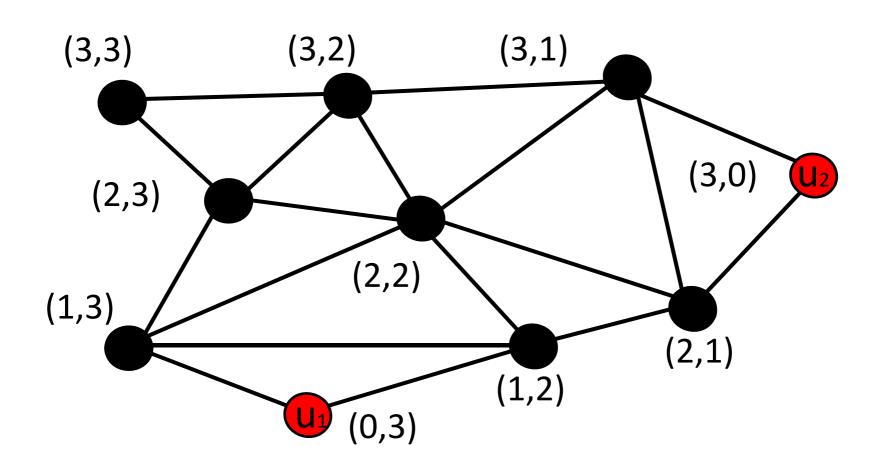


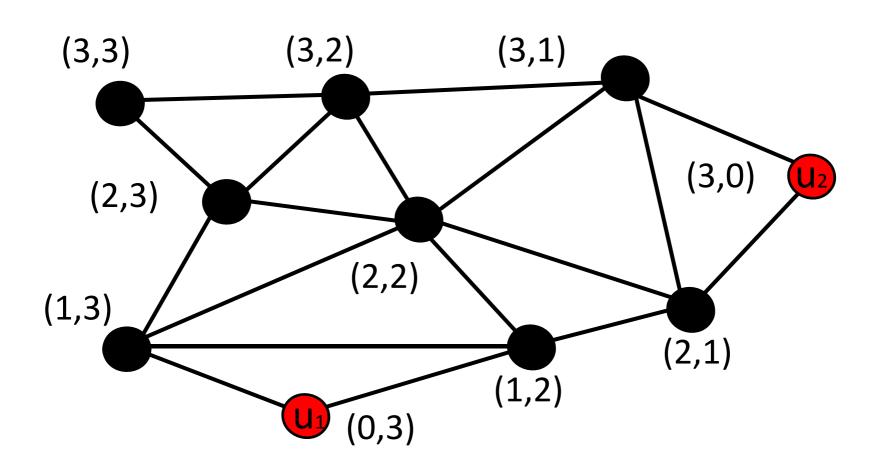




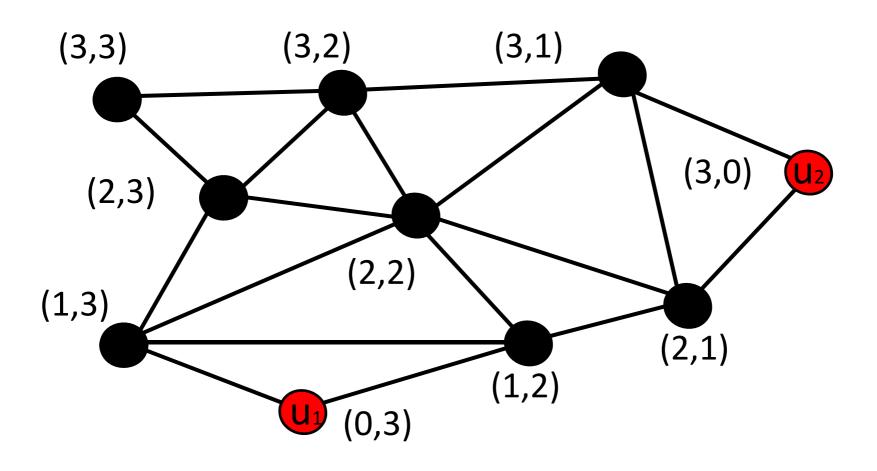




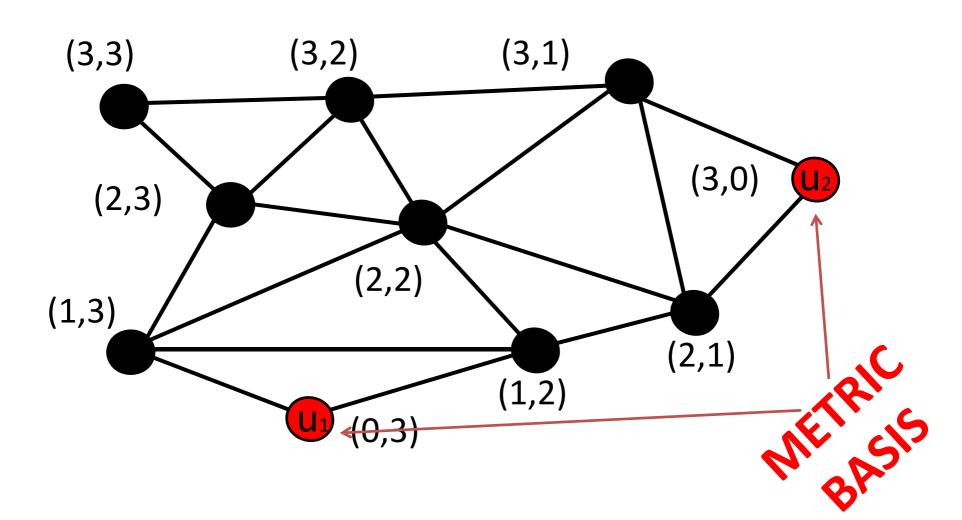


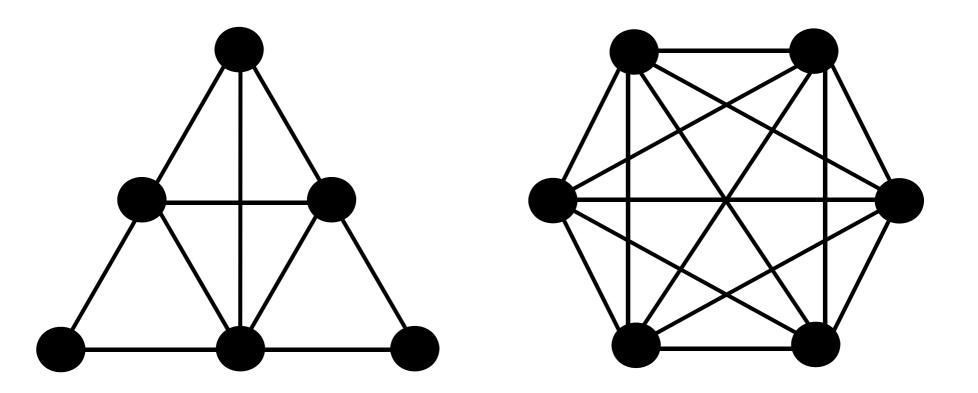


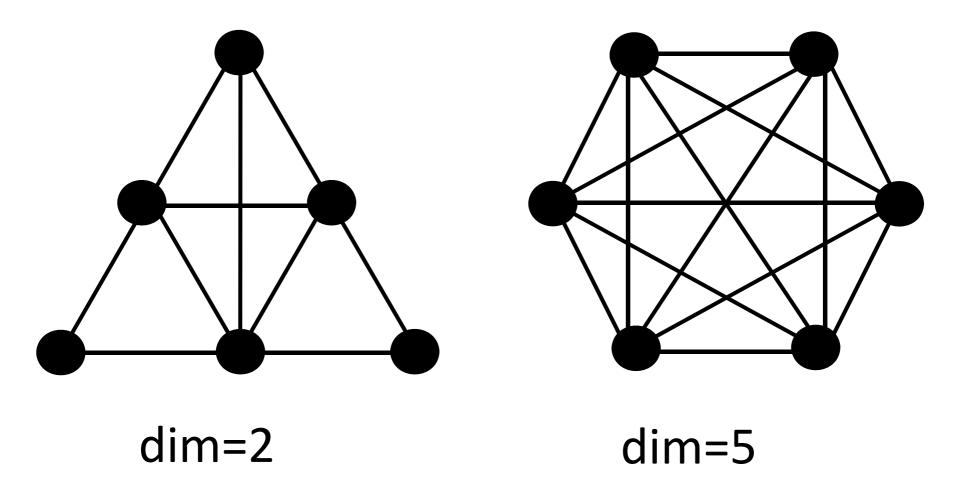
dim(G) = cardinality of a minimum resolving set

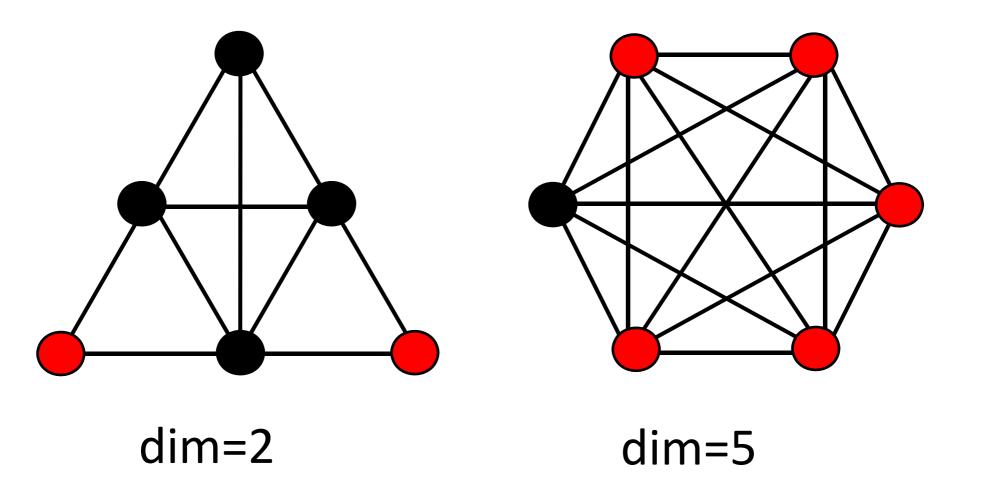


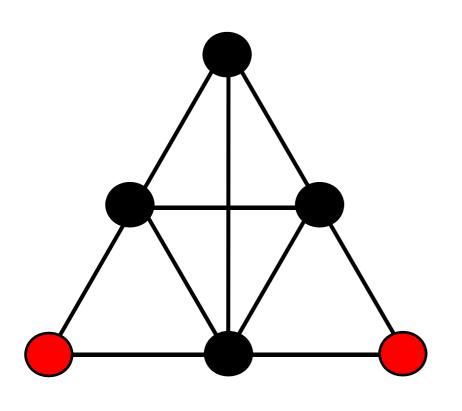
dim(G) = cardinality of a minimum resolving set

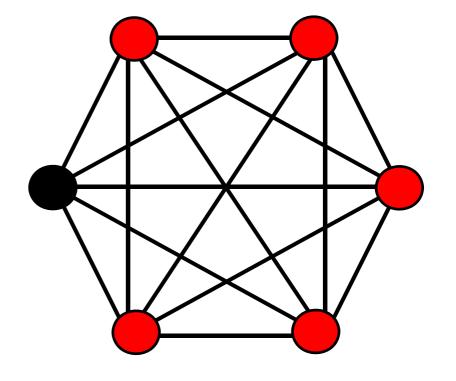










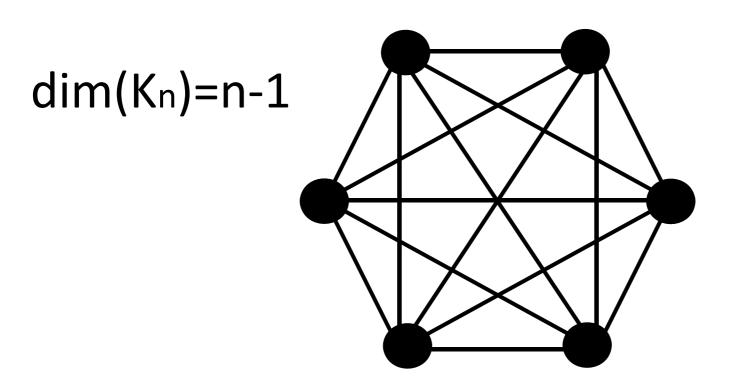


dim=2 # bases=1

dim=5 # bases=6

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.



Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.



Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim(Kn)=n-1

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

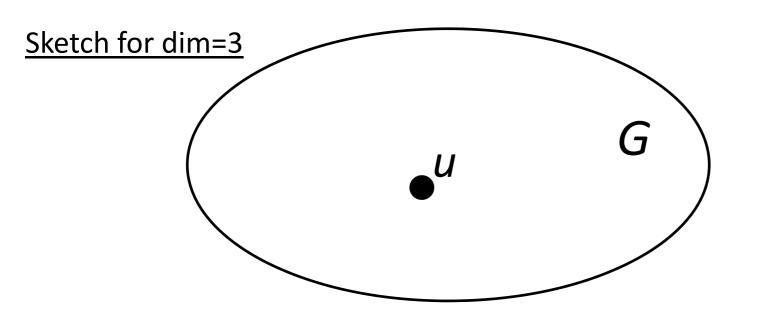
Sketch for dim=3

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

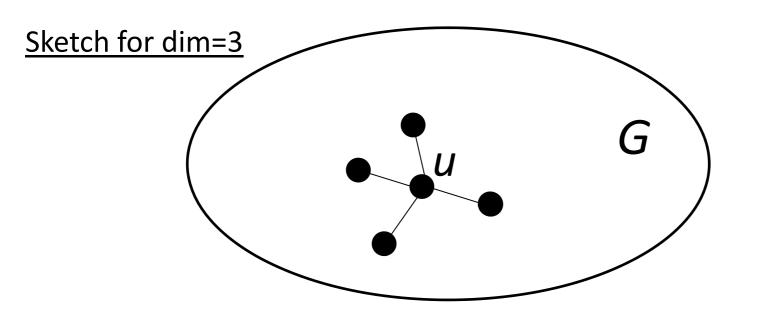


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

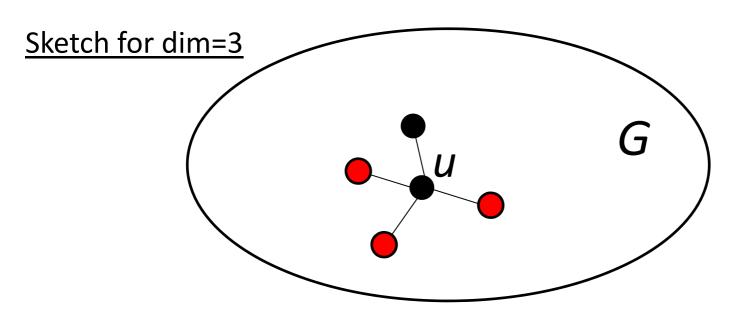


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

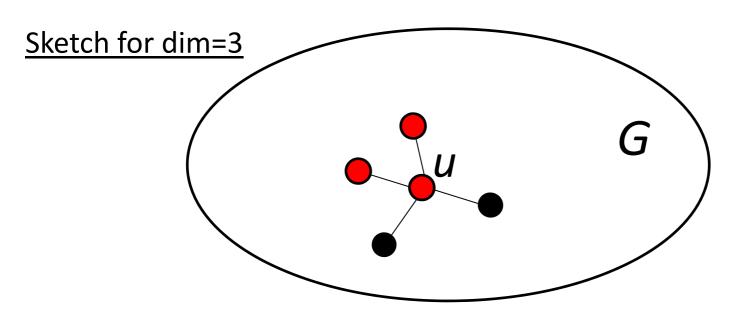


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

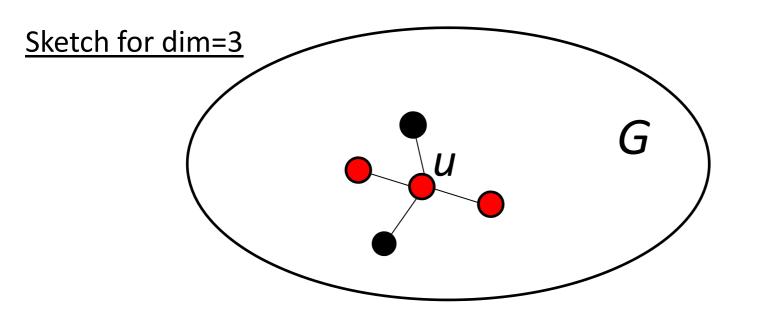


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

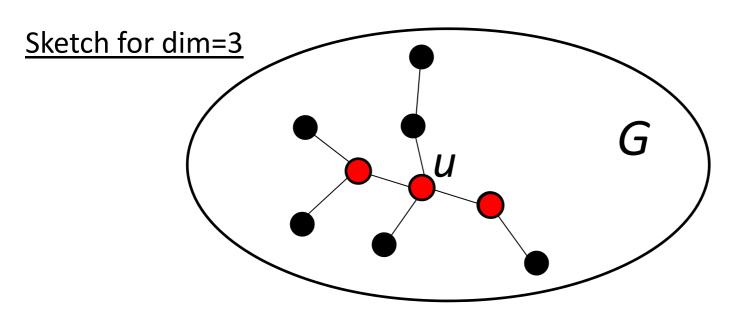


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

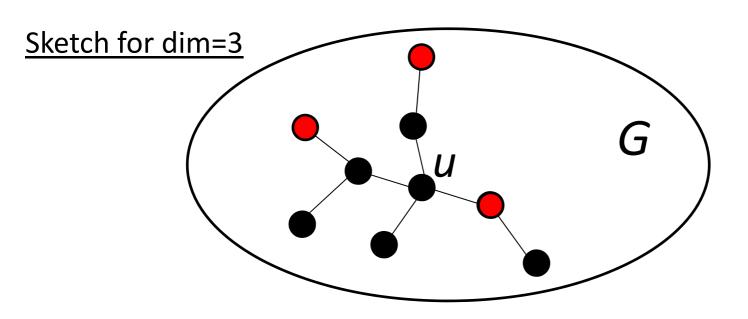


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

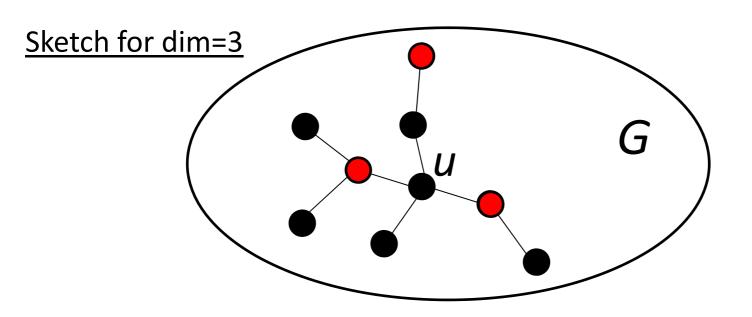


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

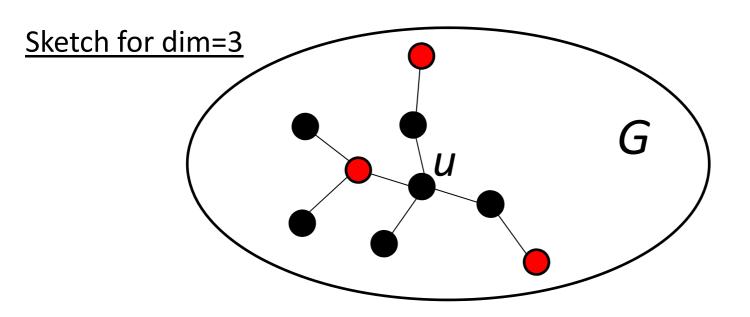


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

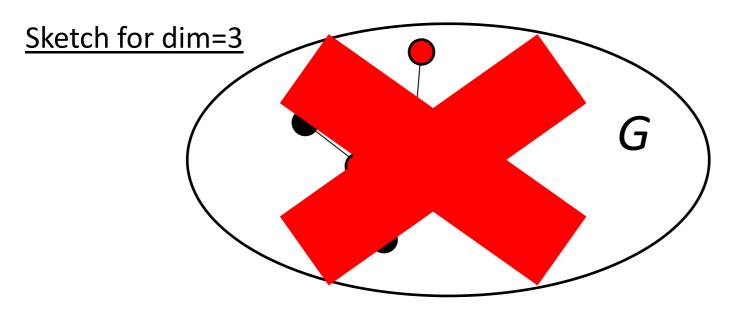


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2



Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

Sketch for dim=3

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

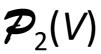
dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

Sketch for dim=3



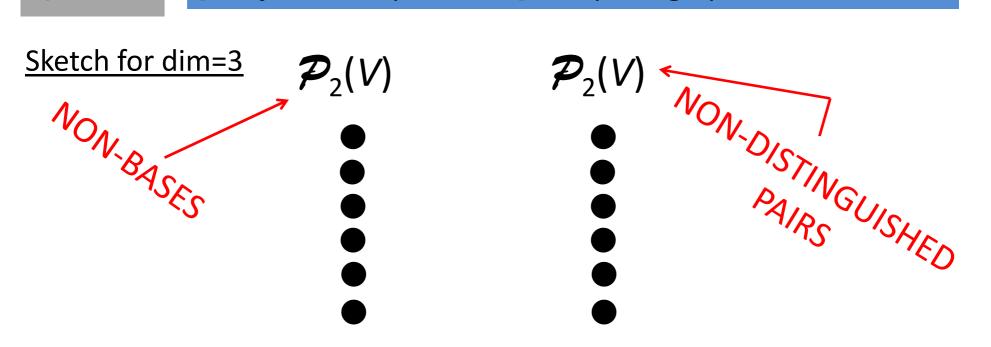
$$\mathcal{P}_{2}(V)$$

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

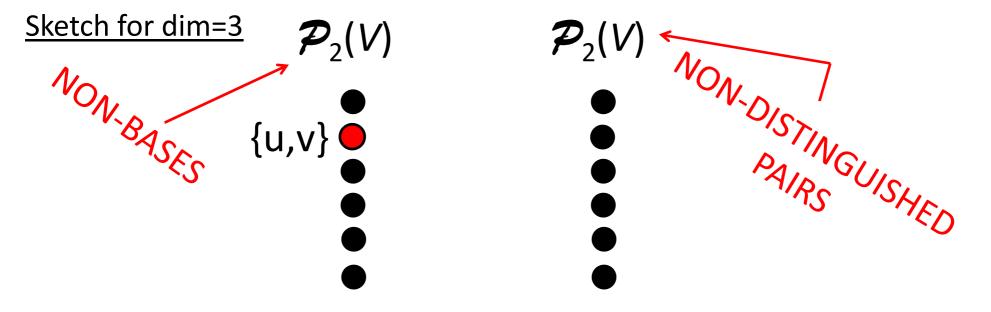


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

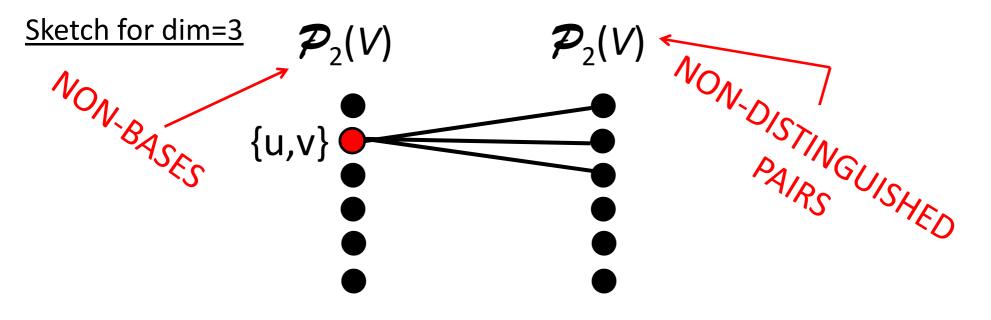


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

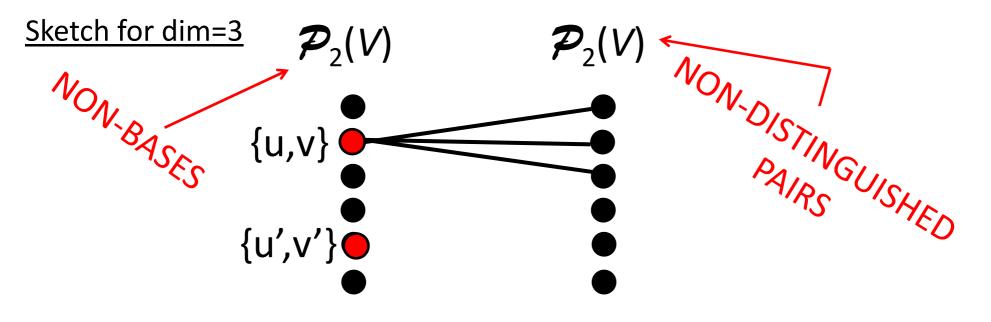


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

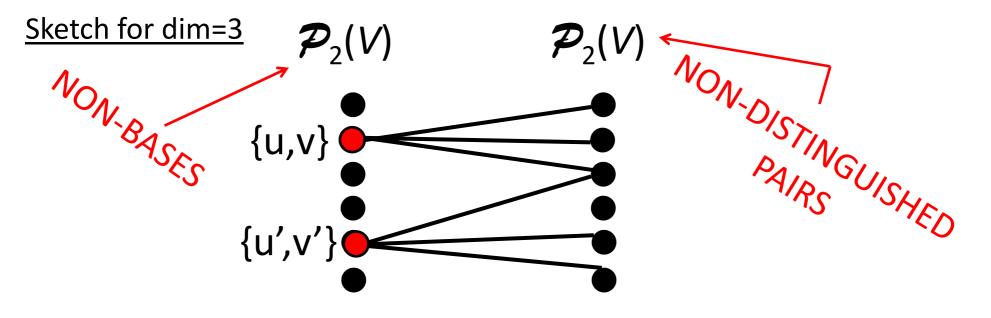


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

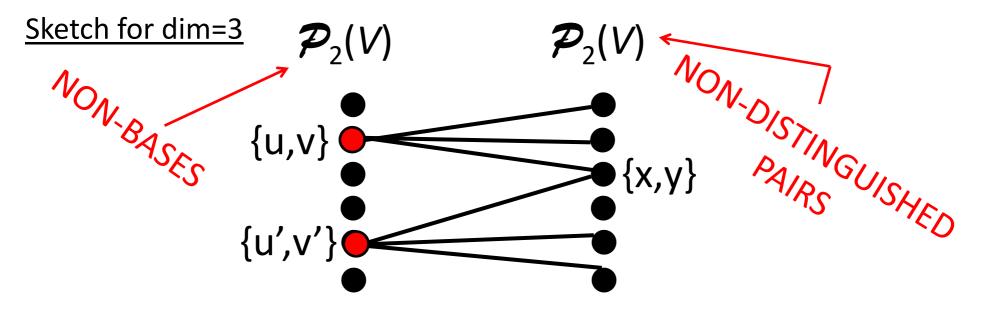


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

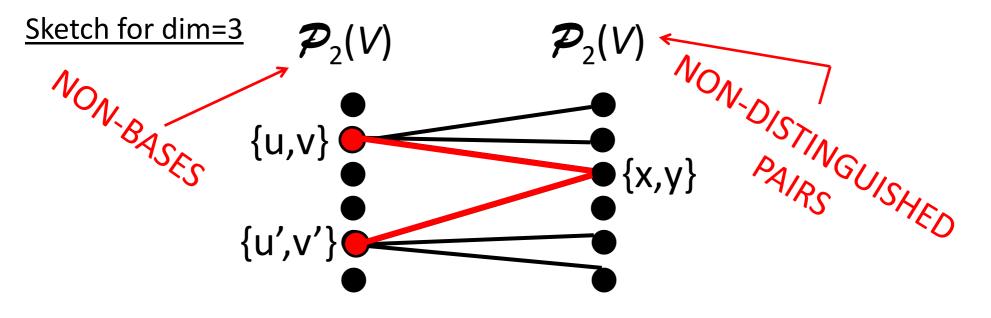


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

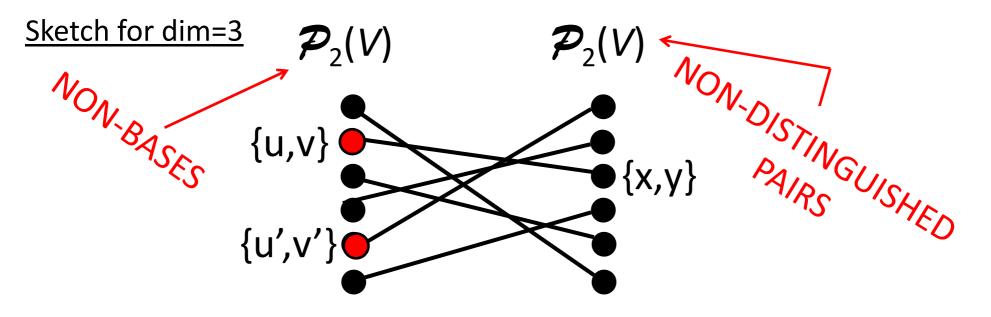


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

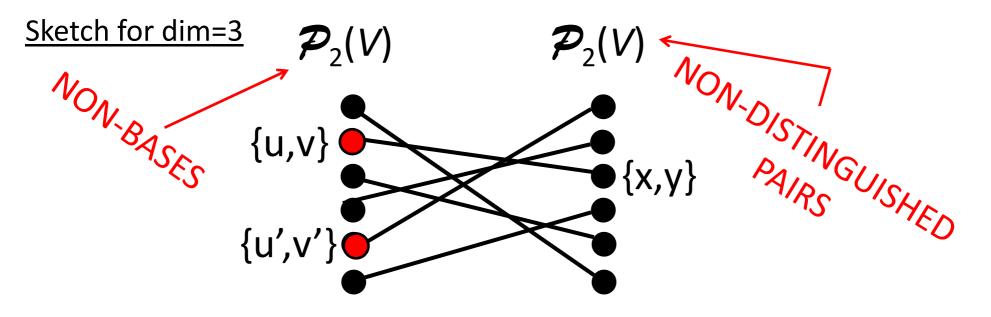


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

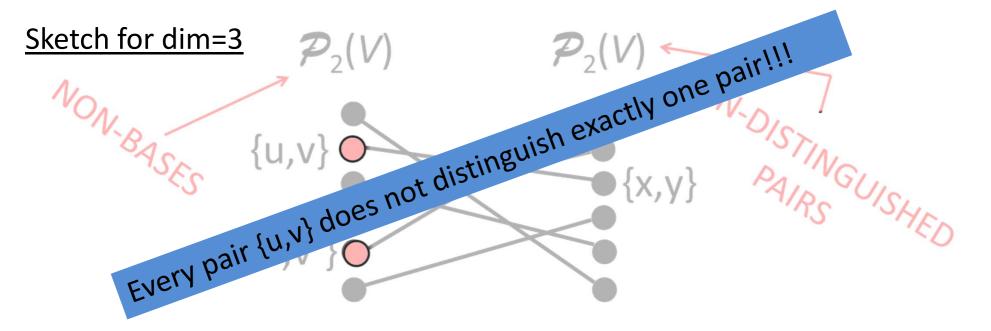


Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

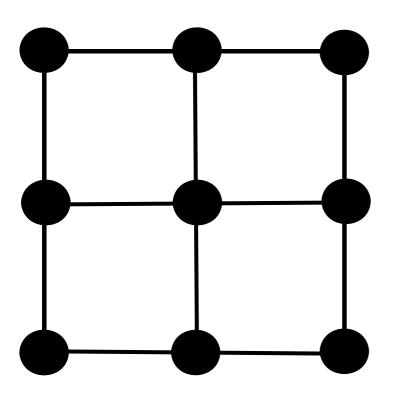
dim≤2

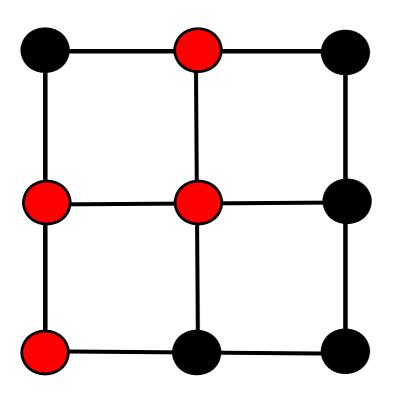
[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

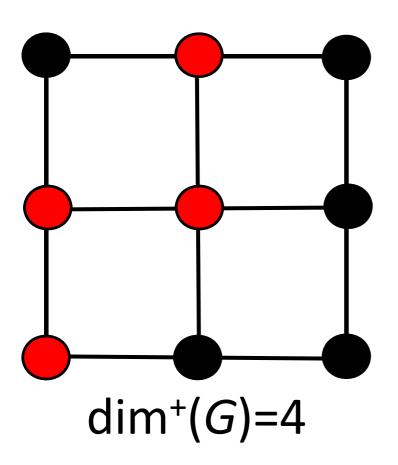
dim>2

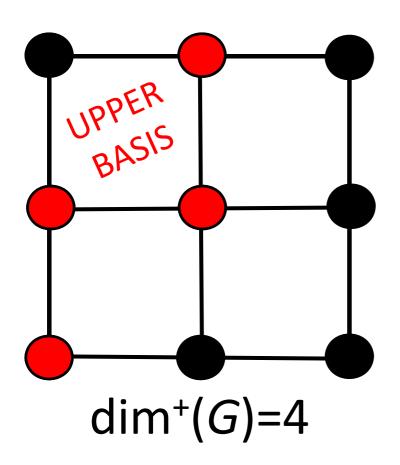


 $dim^+(G)$ = maximum size of a minimal resolving set

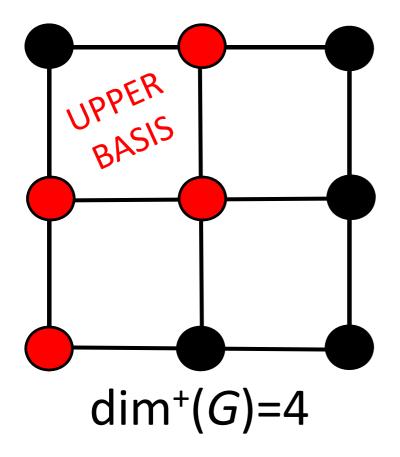




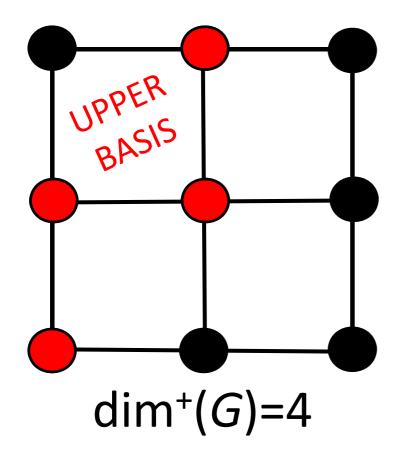


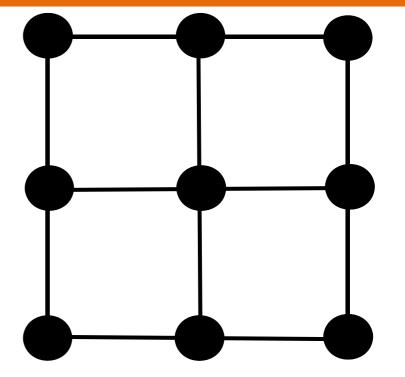


dim⁺(*G*)= maximum size of a minimal resolving set

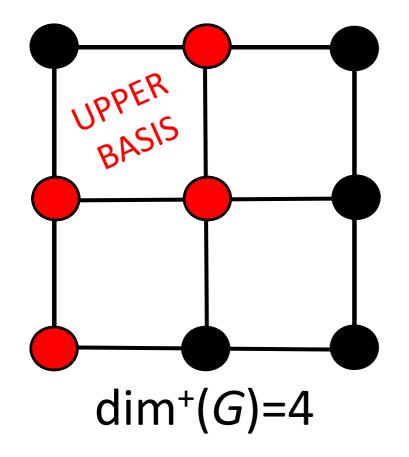


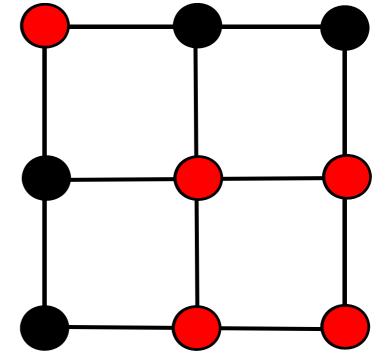
dim⁺(*G*)= maximum size of a minimal resolving set



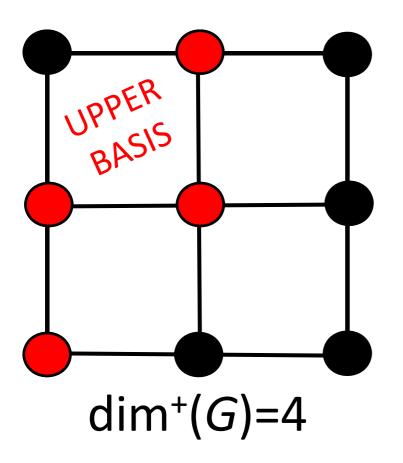


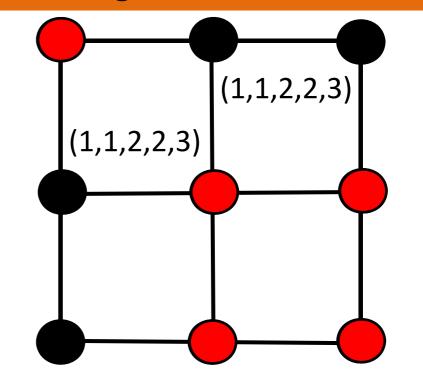
dim⁺(*G*)= maximum size of a minimal resolving set



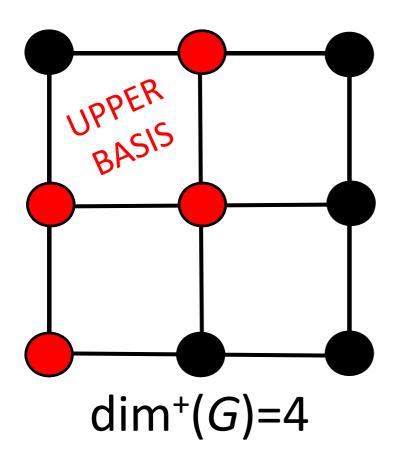


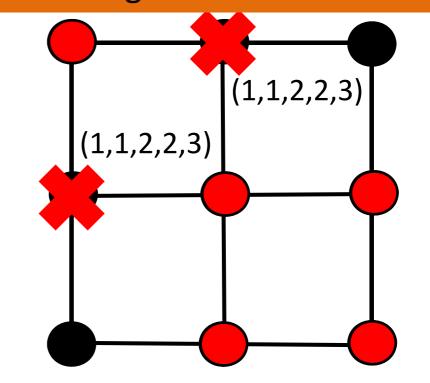
dim⁺(*G*)= maximum size of a minimal resolving set



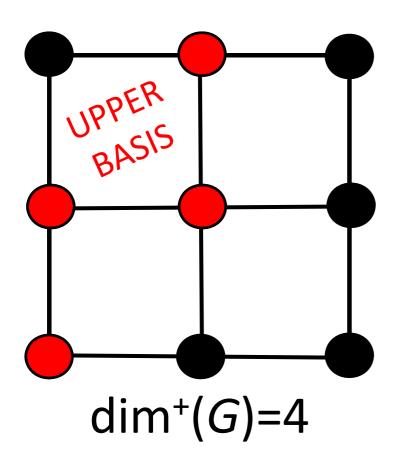


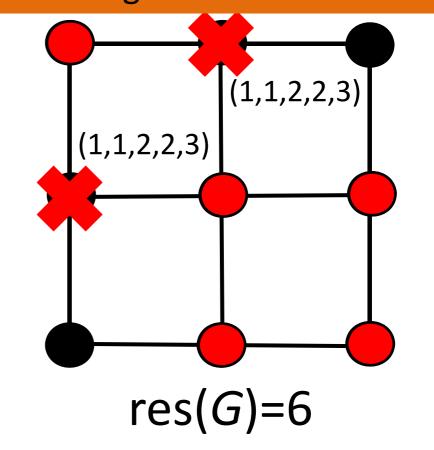
dim⁺(*G*)= maximum size of a minimal resolving set



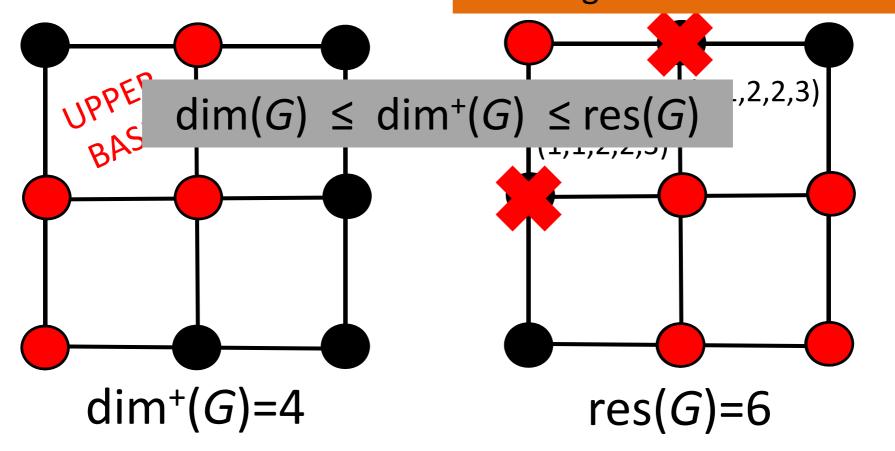


dim⁺(*G*)= maximum size of a minimal resolving set





dim⁺(*G*)= maximum size of a minimal resolving set



 $dim(G) \leq dim^+(G) \leq res(G)$

$$dim(G) \leq dim^+(G) \leq res(G)$$

Realizability

$$dim(G) \leq dim^+(G) \leq res(G)$$

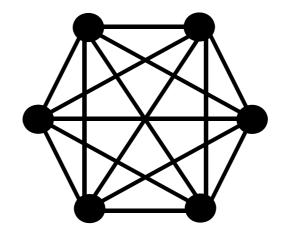
Realizability — [Chartrand et al.,2000]

$$dim(G) \leq dim^+(G) \leq res(G)$$

Realizability — [Chartrand et al.,2000]

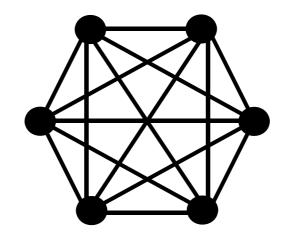
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$



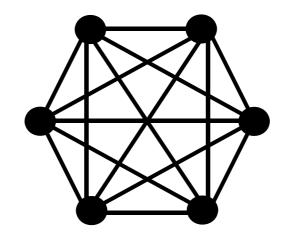
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$



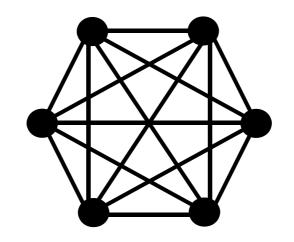
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$



$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$

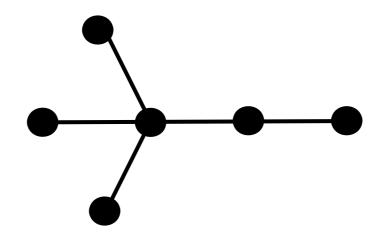


 $res(K_n)=n-1$

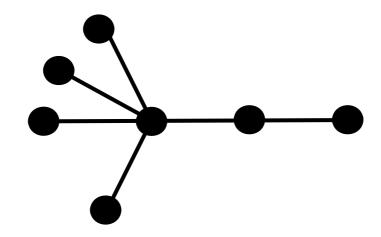
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad C$

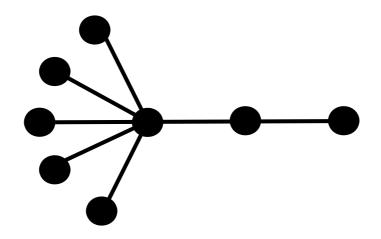
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad \lim_{c} \qquad \qquad C$



$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$



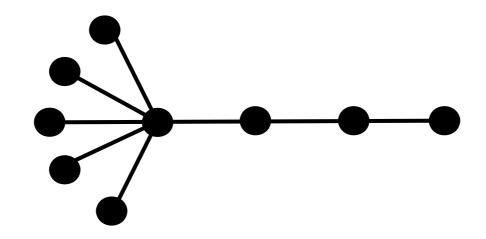
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$



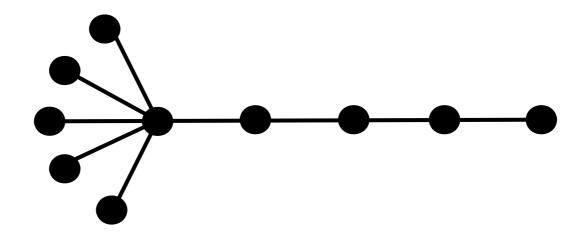
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

 ll_{C}



$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\exists II \\ a \\ C$



$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$

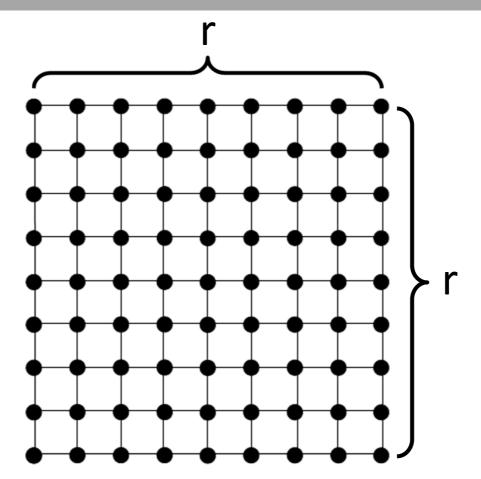
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
a
 $\lim_{a \to b}$

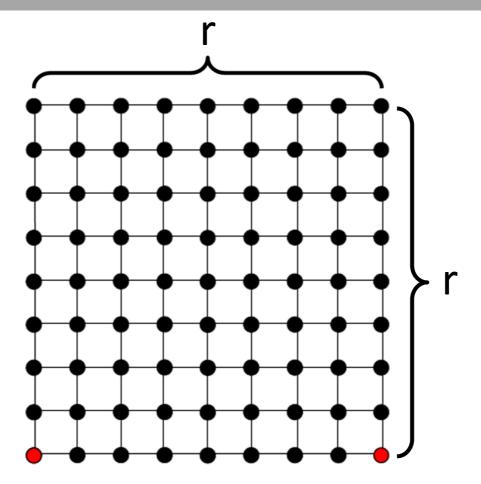
Realizability
$$\leftarrow$$
 [Chartrand et al.,2000]
$$dim(G) \leq dim^{+}(G) \leq res(G)$$

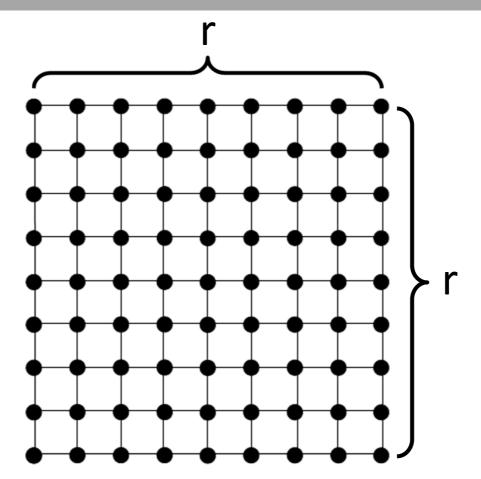
$$\parallel$$

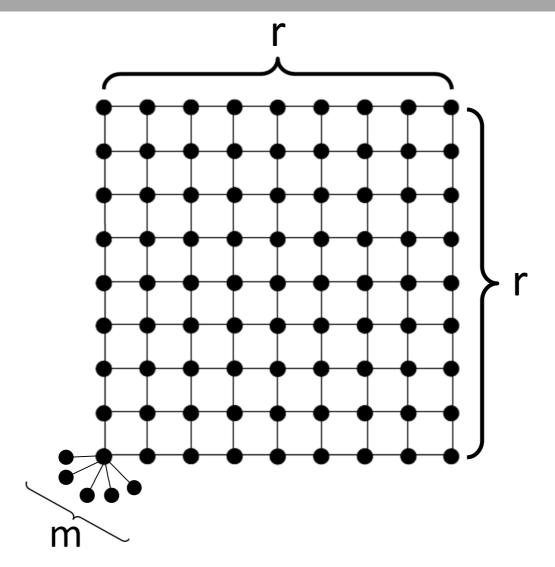
$$a$$

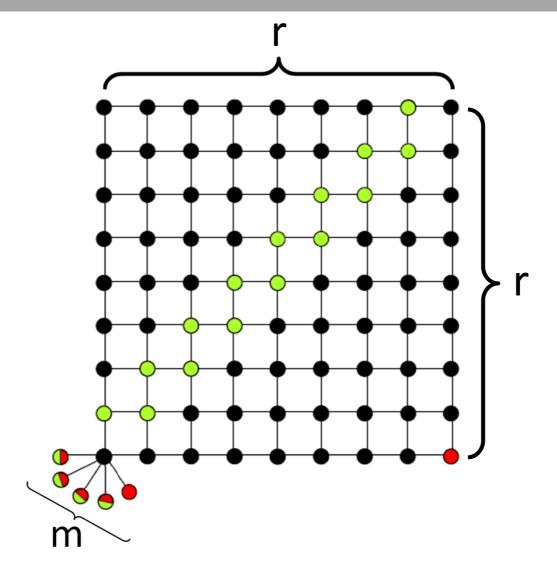
$$b$$

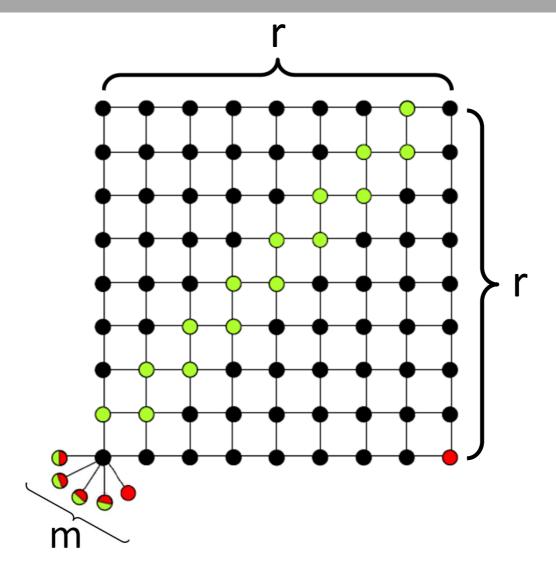










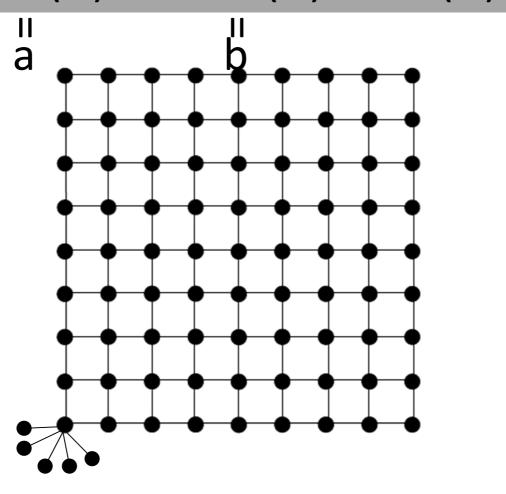


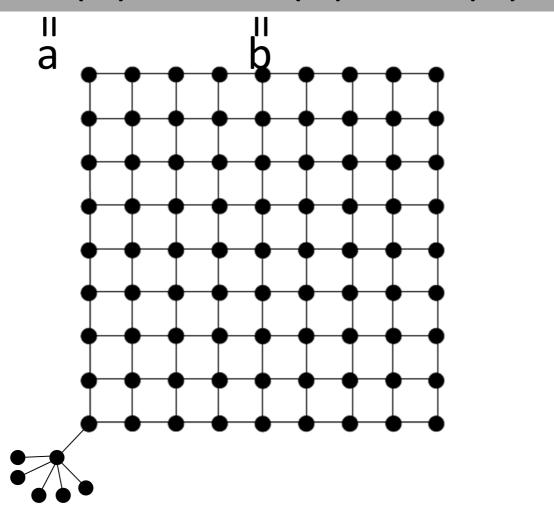
$$dim(G) \leq dim^+(G) \leq res(G)$$

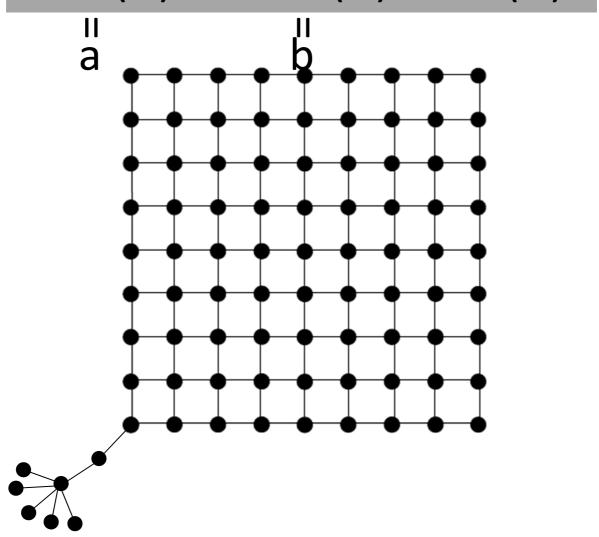
$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

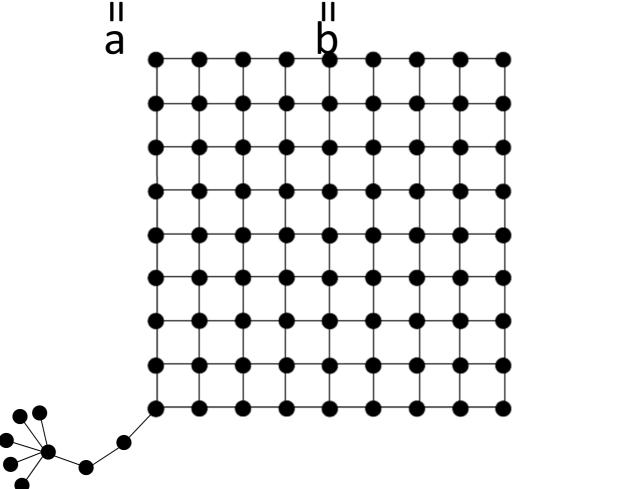
b

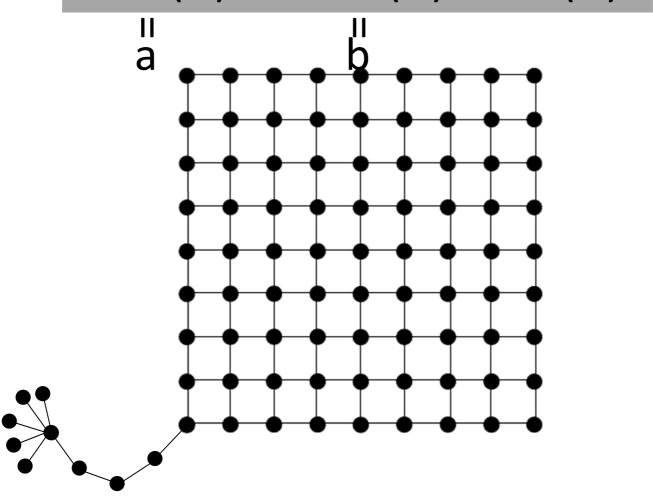






dim(G) ≤ dim⁺(G) ≤ res(G)





$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

b

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

```
[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)
```

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] n ≤ D^{dim} + dim

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] n ≤ D^{dim} + dim ≤

$$dim(G) \le dim^+(G) \le res(G)$$

[KhRaRo'96] $n \le D^{dim} + dim \le C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] $n \leq D^{\dim} + \dim \leq f(\operatorname{res})$

[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)

[Garijo,G.,Márquez] The set of graphs with resolving number *a*>3 is finite.

$$dim(G) \le dim^{+}(G) \le res(G)$$

[KhRaRo'96] $n \le D^{dim} + dim \le f(res)$

[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)

[Garijo,G.,Márquez] The set of graphs with resolving number a>3 is finite.

QUESTION: Realization of triples (a,b,c).

THANKS!