Counting resolving sets in graphs

Antonio González

University of Seville

Joint work with D. Garijo and A. Márquez

dim(G) = cardinality of a minimum resolving set

dim(G) = cardinality of a minimum resolving set

dim=2 # bases=1

dim=5 # bases=6

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim(Kn)=n-1

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

Sketch for dim=3

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

Sketch for dim=3

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

[Garijo,G.,Márquez,2011] Complete graphs.

Sketch for dim=3

$$\mathcal{P}_{2}(V)$$

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

Open Problem [Chartrand, Zhang, 2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

dim≤2

[Chartrand, Zhang, 2000] Complete graphs and odd cycles.

dim>2

 $dim^+(G)$ = maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

dim⁺(*G*)= maximum size of a minimal resolving set

 $dim(G) \leq dim^+(G) \leq res(G)$

$$dim(G) \leq dim^+(G) \leq res(G)$$

Realizability

$$dim(G) \leq dim^+(G) \leq res(G)$$

Realizability — [Chartrand et al.,2000]

$$dim(G) \leq dim^+(G) \leq res(G)$$

Realizability — [Chartrand et al.,2000]

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(K_n)=n-1$$

 $res(K_n)=n-1$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad \lim_{c} \qquad \qquad C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

 ll_{C}

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\exists II \\ a \\ C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
 $\lim_{a} \qquad \qquad C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$
a
 $\lim_{a \to b}$

Realizability
$$\leftarrow$$
 [Chartrand et al.,2000]
$$dim(G) \leq dim^{+}(G) \leq res(G)$$

$$\parallel$$

$$a$$

$$b$$

$$dim(G) \leq dim^+(G) \leq res(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

b

dim(G) ≤ dim⁺(G) ≤ res(G)

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

a

b

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

```
[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)
```

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] n ≤ D^{dim} + dim

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] n ≤ D^{dim} + dim ≤

$$dim(G) \le dim^+(G) \le res(G)$$

[KhRaRo'96] $n \le D^{dim} + dim \le C$

$$\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$$

[KhRaRo'96] $n \leq D^{\dim} + \dim \leq f(\operatorname{res})$

[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)

[Garijo,G.,Márquez] The set of graphs with resolving number *a*>3 is finite.

$$dim(G) \le dim^{+}(G) \le res(G)$$

[KhRaRo'96] $n \le D^{dim} + dim \le f(res)$

[Garijo,G.,Márquez] D ≤ 3res-5 (res>3)

[Garijo,G.,Márquez] The set of graphs with resolving number a>3 is finite.

QUESTION: Realization of triples (a,b,c).

THANKS!