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Infinite graphs and products

P∞ the two-way infinite path. Then the square grid:

P∞�P∞ .

P
(0)
∞ the two-way infinite path with loops. Then the King grid:

P(0)
∞ × P(0)

∞ = P∞ � P∞ .

3D King grid: P
(0)
∞ × P

(0)
∞ × P

(0)
∞ .
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Basic properties

Operation × is associative and commutative.

P3 × K2 × K3
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Basic properties cont’d

|V (G × H)| = |V (G )| · |V (H)|.

|E (G × H)| = 2 · |E (G )| · |E (H)|.
G × H connected if and only if G and H connected and at
least one non-bipartite.

Proposition (Kim, 1991; Abay-Asmerom, Hammack, 2004)

The distance dG×H((g , h), (g ′, h′)) is the smallest d such that
there is an g , g ′-walk of length d in G and an h, h′-walk of length
d in H. In particular, if such walks do not exist, then (g , h) and
(g ′, h′) are in different connected components of G × H.
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Prime factorizations

A graph is prime (with respect to the direct product) if it
cannot be represented as the direct product of two nontrivial
graphs.

G = G1 × G2 ⇒ G1 = K1 ∨ G2 = K1.

Proposition

Every graph G has a prime factor decomposition with respect to
×. The number of prime factors is at most log2 |G |.
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Prime factorizations cont’d

Theorem

Prime factorization with respect to the direct product is neither
unique in the class of disconnected graphs with loops nor in the
class of connected simple graphs.

× = ( × )× = ×( × ) = ×
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Prime factorizations cont’d

Γ0 . . . class of graphs with loops

Theorem (McKenzie, 1971)

Let G be a finite, connected, nonbipartite graph in Γ0. Then G has
unique prime factor decomposition with respect to the direct
product in Γ0.

Theorem (Imrich, 1998)

The prime factor decomposition of finite, connected, nonbipartite
graphs in Γ0 with respect to the direct product can be determined
in polynomial time.
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Recent progress

G ,H bipartite, when the connected components of G × H are
isomorphic? Completely resolved [Hammack, 2008].

If A× C = B × C , and C has an odd cycle, then A = B
[Lovász 1971]. Completely resolved [Hammack, 2009].

Simplified recognition algorithm. The prime factors of
connected nonbipartite graphs with respect to the direct
product can be computed in O(mn2) time. [Hammack,
Imrich, 2009].

Connectivity.
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Hedetniemi’s conjecture

Clearly,
χ(G × H) ≤ min{χ(G ), χ(H)} .

Conjecture (Hedetniemi 1966)

For any graphs G and H,

χ(G × H) = min{χ(G ), χ(H)} .
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Vizing’s conjecture for ×?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

γ(G2H) ≥ γ(G )γ(H) .

Can we pose it (prove it) for the direct product?

NO

G = K2n, n ≥ 3, with a perfect matching removed, then
γ(G × G ) = 3 < γ(G )γ(G ) [Nowakowski, Rall, 1996]

Infinite family Gn, such that γ(Gn × Gn) ≤ 7
9γ(Gn)γ(Gn)

[Zmazek, K., 1996]
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Best upper bound

γt(G × H) ≤ γt(G )γt(H) [Nowakowski, Rall, 1996]

γ(G ) ≤ γt(G ) ≤ 2γ(G )

γ(G × H) ≤ γt(G × H) ≤ γt(G )γt(H) ≤ 4γ(G )γ(H), so

γ(G × H) ≤ 4γ(G )γ(H)

Best possible?
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Best upper bound cont’d

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

γ(G × H) ≤ 3γ(G )γ(H) .

Proof

S , T minimum dominating sets of G , H, respectively.

S : add to S a neighbor of any vertex x ∈ S that has no
neighbor in S .

S total dominating set of G ; |S | ≤ 2|S |.
Similarly enlarge T to T of H.

(S × T ) ∪ (S × T ) dominates G × H.

|(S × T ) ∪ (S × T )| ≤ 3γ(G )γ(H).
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Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

γ(G × H) ≤ 3γ(G )γ(H) .

Proof

S , T minimum dominating sets of G , H, respectively.

S : add to S a neighbor of any vertex x ∈ S that has no
neighbor in S .

S total dominating set of G ; |S | ≤ 2|S |.
Similarly enlarge T to T of H.

(S × T ) ∪ (S × T ) dominates G × H.

|(S × T ) ∪ (S × T )| ≤ 3γ(G )γ(H).



Direct product Domination of direct products Idomatic partitions Four factors Some problems

Best upper bound cont’d
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Best upper bound cont’d

Best possible:

G ,H: connected graphs.

G ′,H ′: subdivide each of the edges of G and H by two
vertices.

G ′′,H ′′: attach two pendant vertices to each vertex of
minimum dominating sets of G ′ and H ′.

γ(G ′′ × H ′′) = 3γ(G ′′)γ(H ′′).
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Lower bound

Let ρ(G ) be the 2-packing number of G : largest set of vertices
with disjoint neighborhoods.

Then

Theorem (Nowakowski, Rall, 1996)

For any graphs G and H with no isolated vertices,

γ(G × H) ≥ max{ρ(G )γt(H), ρ(H)γt(G )} .
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Products of complete graphs

Proposition (Mekǐs, 2010)

If G = ×r
i=1Kni , with r ≥ 3 and ni ≥ r + 1 for all i , then

γ(G ) = r + 1.

Let n ≥ 3 and set
G = ×n

i=1K2n+1 .

Then Proposition gives

γ(G )γ(G )− γ(G × G ) = (n + 1)(n + 1)− (2n + 1) = n2 .
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The concept

An idomatic partition (a.k.a. fall coloring) of a graph G is a
partition of V (G ) into independent dominating sets.

Closely related concept: b-coloring.

Not every graph has an idomatic partition. Example: C5.

An idomatic t-partition is an idomatic partition into t parts.

The fall chromatic number [Dundar et al., 2000] of G , χf (G ),
is the minimum t (when it exists) such that G admits an
idomatic t-partition.

V (Kn) = [n] = {1, 2, . . . , n}.
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V (Kn) = [n] = {1, 2, . . . , n}.
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Kn1
× Kn2

[Dunbar,Hedetniemi,Hedetniemi,Jacobs,Knisely,Laskar,Rall, 2000]

Kn1 ×Kn2 admits an idomatic t-partition if and only if t ∈ {n1, n2}.

Problem: Characterize idomatic partitions for three or more
complete factors.
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Three factors [Valencia-Pabon, 2010]

Lemma

I independent dominating set of Kn1 × Kn2 × Kn3 containing two
vertices with two equal coordinates. Then I = pr−1i (k), where
i ∈ [3] and k ∈ [ni ].

Type A sets: sets as in lemma.

Type A partition: partition of V (G ) into Type A sets.

Theorem

Kn1 × Kn2 × Kn3 has an idomatic ni -partition of Type A for each
i ∈ [3]. Such partitions are the only idomatic partitions of Type A.
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Three factors cont’d

Lemma

I independent dominating set of Kn1 × Kn2 × Kn3 containing no
two vertices with two equal coordinates. Then

I = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)}

for some αi , βi ∈ [ni ], with αi 6= βi and i ∈ [3].

I = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
Type B sets: sets as in lemma.

Type B partition: partition of V (G ) into Type B sets.

Theorem

Kn1 ×Kn2 ×Kn3 has an idomatic partition of Type B if and only at
least two of ni ’s are even.
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Three factors cont’d

Type C partition: partition of V (G ) with at least one type A part
and at least one type B part.

Theorem

Kn1 × Kn2 × Kn3 has an idomatic (q1 + q2)-partition of Type C if
and only if there exists i ∈ [3] such that ni − q1 > 1 and
Kni−q1 ×Knj ×Knk admits and an idomatic q2-partition of Type B.
(Here {i , j , k} = {1, 2, 3}.)
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Some notation

For G = ×k
i=1Kni , u = (u1, . . . , uk), and v = (v1, . . . , vk), let

e(u, v) = |{i | ui = vi}| .

u and v are adjacent in G if and only if e(u, v) = 0.

I ⊆ V (G ) independent if and only if e(u, v) > 0, u, v ∈ I .

Let X ⊆ V (G ) be an independent set of G = ×k
i=1Kni . Let

{e(u, v) | u, v ∈ X , u 6= v} = {j1, . . . , jr} .

Then we say that X is a Tj1,...,jr -set.
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Possibilities

Let I ⊆ V (G ), G = ×t
i=1Kni , be an independent and dominating

set of G .

Three factors (t = 2)

Then I can be a
(i) T1-set,
(ii) T2-set,
(iii) T1,2-set.

Four factors (t = 3)

Then I can be a

(i) T1-set, (v) T1,3-set,
(ii) T2-set, (vi) T2,3-set,
(iii) T3-set, (vii) T1,2,3-set.
(iv) T1,2-set,
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T2-sets and T2,3-set are not admissible

Assume I is a T2-set or a T2,3-set.

Since I is dominating, |I | > 2.

WLOG (0, 0, 0, 0) ∈ I . By vertex-transitivity and
commutativity further WLOG (0, 0, 1, 1) ∈ I .

e((0, 0, 1, 1), (1, 0, 0, 0)) = 1 ⇒ (1, 0, 0, 0) /∈ I .

There exists (a, b, c , d) ∈ I such that (a, b, c , d) dominates
(1, 0, 0, 0).

In particular, b, c , d 6= 0.

But then e((a, b, c , d), (0, 0, 0, 0)) ≤ 1, a contradiction.
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T1,2-partitions

Let G = K2 × K2 × K2 × K4. Then the sets

I1 = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1),

(1, 0, 1, 2), (0, 1, 0, 2), (1, 1, 0, 3), (0, 0, 1, 3)},

and

I2 = {(u1 + 1 mod 2, u2, u3, u4) | (u1, u2, u3, u4) ∈ I1} ,
I3 = {(u1, u2 + 1 mod 2, u3, u4) | (u1, u2, u3, u4) ∈ I1} ,
I4 = {(u1, u2, u3 + 1 mod 2, u4) | (u1, u2, u3, u4) ∈ I1} ,

form an idomatic partition of G .
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T1,2,3-partitions

For Kn1 × Kn2 × Kn3 × Kn4 ,

I = [n0]× [n1]× [n2]× {i} ,

is a dominating T1,2,3-set.

For ×t
i=1Kni ,

Ij = [n1]× · · · × [n`−1]× {j} × [n`+1]× · · · × [nt ]

is a dominating T1,2,...,t−1-set, where j ∈ [n`].

Let n` = min{ni | 1 ≤ i ≤ k}. Then (as Hedetniemi’s
conjecture holds for complete graphs) χ(G ) = n` and
therefore χ(G ) = χf (G ).
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T1,2,3-partitions cont’d

For K2 × K2 × K2 × K2,

I1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}

and

I2 = {(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),

(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}

are both dominating T1,2,3-sets.



Direct product Domination of direct products Idomatic partitions Four factors Some problems

Characterization of T1-sets

Theorem

Let I be a T1-set of Kn1 × Kn2 × Kn3 × Kn4 . Then I is a
dominating set if and only if ni ≥ 3 and

I = {(α0, α1, α2, α3), (α0, β1, β2, β3), (α0, γ1, γ2, γ3),

(β0, α1, β2, γ3), (β0, γ1, α2, β3), (β0, β1, γ2, α3),

(γ0, α1, γ2, β3), (γ0, β1, α2, γ3), (γ0, γ1, β2, α3)} ,

where αi , βi , γi are pairwise different.

I = {(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2),

(1, 0, 1, 2), (1, 2, 0, 1), (1, 1, 2, 0),

(2, 0, 2, 1), (2, 1, 0, 2), (2, 2, 1, 0)} .
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Characterization of T1-partitions

Theorem

Kn1 × Kn2 × Kn3 × Kn4 admits an idomatic partition into T1-sets if
and only if ni ≥ 3 and there exist indices j , k ∈ [4], j 6= k, such
that 3|nj and 3|nk .
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More than 4 factors

Theorem (Gravier, Mekǐs, Mollard, 2010)

Let G = ×t
i=1Kni with t ≥ 3 and ni ≥ t − 1 for all i and let

0, 1, a2, ..., at−2 be pairwise different (all) elements from GF [pk ]. If
t − 1 = pk for some prime number p and some positive integer k,
then the set

I = L{(0, 1, 1, . . . , 1), (1, 0, 1, a2, . . . , at−2)},

the two dimensional subspace of ×t
i=1GF [pk ], is a dominating

T1-set.

To be hopefully continued ...
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Let G = ×t
i=1Kni with t ≥ 3 and ni ≥ t − 1 for all i and let

0, 1, a2, ..., at−2 be pairwise different (all) elements from GF [pk ]. If
t − 1 = pk for some prime number p and some positive integer k,
then the set

I = L{(0, 1, 1, . . . , 1), (1, 0, 1, a2, . . . , at−2)},

the two dimensional subspace of ×t
i=1GF [pk ], is a dominating

T1-set.

To be hopefully continued ...



Direct product Domination of direct products Idomatic partitions Four factors Some problems

Problem

Characterize T1,2-sets and T1,2,3-sets in direct products of four
complete graphs.

Conjecture

Let I be a T1-set of ×t
i=1Kni , where t ≥ 5. Then |I | = (t − 1)2.

Gravier, Moncel, Semri, Identifying codes of Cartesian product of
two cliques of the same size, Electron. J. Combin. 15 (2008).

Problem

Identifying codes of the direct product of two (or more) complete
graphs (of the same size).
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Thank you.
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