< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Domination and Independent Domination in Direct Products of Graphs

Sandi Klavžar

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

Bordeaux Workshop on Identifying Codes November 21-25, 2011

Joint work with Boštjan Brešar, Gašper Mekiš, Douglas Rall

- 2 Domination of direct products
- Idomatic partitions

 P_3

Q α

Ô

∘P₄

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Strong product

Cartesian product

Direct Product

Strong product

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Infinite graphs and products

 \bullet $\ensuremath{\mathcal{P}_{\infty}}$ the two-way infinite path. Then the square grid:

$P_{\infty} \Box P_{\infty}$.

Infinite graphs and products

• P_{∞} the two-way infinite path. Then the square grid:

$P_{\infty} \Box P_{\infty}$.

• $P_{\infty}^{(0)}$ the two-way infinite path with loops. Then the King grid:

$$P_{\infty}^{(0)} imes P_{\infty}^{(0)} = P_{\infty} oxtimes P_{\infty}$$
 .

Infinite graphs and products

• P_{∞} the two-way infinite path. Then the square grid:

 $P_{\infty} \Box P_{\infty}$.

• $P_{\infty}^{(0)}$ the two-way infinite path with loops. Then the King grid: $P_{\infty}^{(0)} \times P_{\infty}^{(0)} = P_{\infty} \boxtimes P_{\infty}$.

• 3D King grid: $P_{\infty}^{(0)} \times P_{\infty}^{(0)} \times P_{\infty}^{(0)}$.

 \bullet Operation \times is associative and commutative.

 \bullet Operation \times is associative and commutative.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Basic properties cont'd

•
$$|V(G \times H)| = |V(G)| \cdot |V(H)|.$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

Basic properties cont'd

•
$$|V(G \times H)| = |V(G)| \cdot |V(H)|.$$

•
$$|E(G \times H)| = 2 \cdot |E(G)| \cdot |E(H)|$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic properties cont'd

- $|V(G \times H)| = |V(G)| \cdot |V(H)|.$
- $|E(G \times H)| = 2 \cdot |E(G)| \cdot |E(H)|.$
- $G \times H$ connected if and only if G and H connected and at least one non-bipartite.

Basic properties cont'd

- $|V(G \times H)| = |V(G)| \cdot |V(H)|.$
- $|E(G \times H)| = 2 \cdot |E(G)| \cdot |E(H)|.$
- $G \times H$ connected if and only if G and H connected and at least one non-bipartite.

Proposition (Kim, 1991; Abay-Asmerom, Hammack, 2004)

The distance $d_{G \times H}((g, h), (g', h'))$ is the smallest d such that there is an g, g'-walk of length d in G and an h, h'-walk of length d in H. In particular, if such walks do not exist, then (g, h) and (g', h') are in different connected components of $G \times H$. • A graph is prime (with respect to the direct product) if it cannot be represented as the direct product of two nontrivial graphs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• A graph is prime (with respect to the direct product) if it cannot be represented as the direct product of two nontrivial graphs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

•
$$G = G_1 \times G_2 \Rightarrow G_1 = K_1 \vee G_2 = K_1$$
.

Prime factorizations

• A graph is prime (with respect to the direct product) if it cannot be represented as the direct product of two nontrivial graphs.

•
$$G = G_1 \times G_2 \Rightarrow G_1 = K_1 \vee G_2 = K_1$$
.

Proposition

Every graph G has a prime factor decomposition with respect to \times . The number of prime factors is at most $\log_2 |G|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Prime factorizations cont'd

Theorem

Prime factorization with respect to the direct product is neither unique in the class of disconnected graphs with loops nor in the class of connected simple graphs.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Prime factorizations cont'd

Theorem

Prime factorization with respect to the direct product is neither unique in the class of disconnected graphs with loops nor in the class of connected simple graphs.

$$N \times \nabla = (1 \times 1) \times \nabla = 1 \times (1 \times \nabla) = 1 \times \nabla$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Prime factorizations cont'd

$\Gamma_0 \ \ldots \ class of graphs with loops$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Prime factorizations cont'd

$\Gamma_0 \ \ldots \ class of graphs with loops$

Theorem (McKenzie, 1971)

Let G be a finite, connected, nonbipartite graph in Γ_0 . Then G has unique prime factor decomposition with respect to the direct product in Γ_0 .

Prime factorizations cont'd

$\Gamma_0 \quad \dots \quad \text{class of graphs with loops}$

Theorem (McKenzie, 1971)

Let G be a finite, connected, nonbipartite graph in Γ_0 . Then G has unique prime factor decomposition with respect to the direct product in Γ_0 .

Theorem (Imrich, 1998)

The prime factor decomposition of finite, connected, nonbipartite graphs in Γ_0 with respect to the direct product can be determined in polynomial time.

• *G*, *H* bipartite, when the connected components of *G* × *H* are isomorphic? Completely resolved [Hammack, 2008].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• G, H bipartite, when the connected components of $G \times H$ are isomorphic? Completely resolved [Hammack, 2008].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 If A × C = B × C, and C has an odd cycle, then A = B [Lovász 1971]. Completely resolved [Hammack, 2009].

Recent progress

- *G*, *H* bipartite, when the connected components of *G* × *H* are isomorphic? Completely resolved [Hammack, 2008].
- If A × C = B × C, and C has an odd cycle, then A = B [Lovász 1971]. Completely resolved [Hammack, 2009].
- Simplified recognition algorithm. The prime factors of connected nonbipartite graphs with respect to the direct product can be computed in O(mn²) time. [Hammack, Imrich, 2009].

Recent progress

- *G*, *H* bipartite, when the connected components of *G* × *H* are isomorphic? Completely resolved [Hammack, 2008].
- If A × C = B × C, and C has an odd cycle, then A = B [Lovász 1971]. Completely resolved [Hammack, 2009].
- Simplified recognition algorithm. The prime factors of connected nonbipartite graphs with respect to the direct product can be computed in O(mn²) time. [Hammack, Imrich, 2009].

Connectivity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hedetniemi's conjecture

Clearly,

$\chi(G \times H) \leq \min\{\chi(G), \chi(H)\}.$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Hedetniemi's conjecture

Clearly,

$$\chi(G \times H) \leq \min\{\chi(G), \chi(H)\}.$$

Conjecture (Hedetniemi 1966)

For any graphs G and H,

 $\chi(G \times H) = \min\{\chi(G), \, \chi(H)\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Vizing's conjecture for \times ?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

$\gamma(G\Box H) \geq \gamma(G)\gamma(H).$

Vizing's conjecture for \times ?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

$\gamma(G\Box H) \geq \gamma(G)\gamma(H)$.

Can we pose it (prove it) for the direct product?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vizing's conjecture for \times ?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

$\gamma(G\Box H) \geq \gamma(G)\gamma(H)$.

Can we pose it (prove it) for the direct product?

NO

Vizing's conjecture for \times ?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

 $\gamma(G\Box H) \geq \gamma(G)\gamma(H).$

Can we pose it (prove it) for the direct product?

- NO
- $G = K_{2n}$, $n \ge 3$, with a perfect matching removed, then $\gamma(G \times G) = 3 < \gamma(G)\gamma(G)$ [Nowakowski, Rall, 1996]

Vizing's conjecture for \times ?

Conjecture (Vizing, 1968)

For every pair of graphs G and H,

 $\gamma(G\Box H) \geq \gamma(G)\gamma(H).$

Can we pose it (prove it) for the direct product?

- NO
- $G = K_{2n}$, $n \ge 3$, with a perfect matching removed, then $\gamma(G \times G) = 3 < \gamma(G)\gamma(G)$ [Nowakowski, Rall, 1996]
- Infinite family G_n , such that $\gamma(G_n \times G_n) \leq \frac{7}{9}\gamma(G_n)\gamma(G_n)$ [Zmazek, K., 1996]

Best upper bound

• $\gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H)$ [Nowakowski, Rall, 1996]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Best upper bound

- $\gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H)$ [Nowakowski, Rall, 1996]
- $\gamma(G) \leq \gamma_t(G) \leq 2\gamma(G)$
Best upper bound

- $\gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H)$ [Nowakowski, Rall, 1996]
- $\gamma(G) \leq \gamma_t(G) \leq 2\gamma(G)$
- $\gamma(G \times H) \leq \gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H) \leq 4\gamma(G)\gamma(H)$,

Best upper bound

- $\gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H)$ [Nowakowski, Rall, 1996]
- $\gamma(G) \leq \gamma_t(G) \leq 2\gamma(G)$
- $\gamma(G \times H) \leq \gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H) \leq 4\gamma(G)\gamma(H)$, so

 $\gamma(G \times H) \leq 4\gamma(G)\gamma(H)$

Best upper bound

- $\gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H)$ [Nowakowski, Rall, 1996]
- $\gamma(G) \leq \gamma_t(G) \leq 2\gamma(G)$
- $\gamma(G \times H) \leq \gamma_t(G \times H) \leq \gamma_t(G)\gamma_t(H) \leq 4\gamma(G)\gamma(H)$, so

$$\gamma(G \times H) \leq 4\gamma(G)\gamma(H)$$

• Best possible?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Best upper bound cont'd

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

 $\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

 $\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$.

Proof

• S, T minimum dominating sets of G, H, respectively.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

$$\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$$
.

- S, T minimum dominating sets of G, H, respectively.
- *S*: add to S a neighbor of any vertex x ∈ S that has no neighbor in S.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

$$\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$$
.

- S, T minimum dominating sets of G, H, respectively.
- *S*: add to S a neighbor of any vertex x ∈ S that has no neighbor in S.
- \overline{S} total dominating set of G; $|\overline{S}| \leq 2|S|$.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

$$\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$$
.

- S, T minimum dominating sets of G, H, respectively.
- *S*: add to S a neighbor of any vertex x ∈ S that has no neighbor in S.
- \overline{S} total dominating set of G; $|\overline{S}| \leq 2|S|$.
- Similarly enlarge T to \overline{T} of H.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

$$\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$$
.

- S, T minimum dominating sets of G, H, respectively.
- *S*: add to S a neighbor of any vertex x ∈ S that has no neighbor in S.
- \overline{S} total dominating set of G; $|\overline{S}| \leq 2|S|$.
- Similarly enlarge T to \overline{T} of H.
- $(S \times \overline{T}) \cup (\overline{S} \times T)$ dominates $G \times H$.

Theorem (Brešar, K., Rall, 2007)

For any graphs G and H,

$$\gamma(G \times H) \leq 3\gamma(G)\gamma(H)$$
.

- S, T minimum dominating sets of G, H, respectively.
- *S*: add to S a neighbor of any vertex x ∈ S that has no neighbor in S.
- \overline{S} total dominating set of G; $|\overline{S}| \leq 2|S|$.
- Similarly enlarge T to \overline{T} of H.
- $(S \times \overline{T}) \cup (\overline{S} \times T)$ dominates $G \times H$.
- $|(S \times \overline{T}) \cup (\overline{S} \times T)| \leq 3\gamma(G)\gamma(H).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Best upper bound cont'd

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Best upper bound cont'd

Best possible:

• *G*, *H*: connected graphs.

Best upper bound cont'd

- *G*, *H*: connected graphs.
- G', H': subdivide each of the edges of G and H by two vertices.

Best upper bound cont'd

- G, H: connected graphs.
- G', H': subdivide each of the edges of G and H by two vertices.
- *G*", *H*": attach two pendant vertices to each vertex of minimum dominating sets of *G*' and *H*'.

Best upper bound cont'd

- G, H: connected graphs.
- G', H': subdivide each of the edges of G and H by two vertices.
- *G*", *H*": attach two pendant vertices to each vertex of minimum dominating sets of *G*' and *H*'.

•
$$\gamma(G'' \times H'') = 3\gamma(G'')\gamma(H'').$$

Let $\rho(G)$ be the 2-packing number of G: largest set of vertices with disjoint neighborhoods.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\rho(G)$ be the 2-packing number of G: largest set of vertices with disjoint neighborhoods. Then

Theorem (Nowakowski, Rall, 1996)

For any graphs G and H with no isolated vertices,

 $\gamma(G \times H) \geq \max\{\rho(G)\gamma_t(H), \rho(H)\gamma_t(G)\}.$

Products of complete graphs

Proposition (Mekiš, 2010)

If $G = \times_{i=1}^{r} K_{n_i}$, with $r \ge 3$ and $n_i \ge r+1$ for all i, then $\gamma(G) = r+1$.

Products of complete graphs

Proposition (Mekiš, 2010)

If $G = \times_{i=1}^{r} K_{n_i}$, with $r \ge 3$ and $n_i \ge r+1$ for all i, then $\gamma(G) = r+1$.

Let $n \geq 3$ and set

$$G = \times_{i=1}^n K_{2n+1}.$$

Products of complete graphs

Proposition (Mekiš, 2010)

If $G = \times_{i=1}^{r} K_{n_i}$, with $r \ge 3$ and $n_i \ge r+1$ for all i, then $\gamma(G) = r+1$.

Let $n \geq 3$ and set

$$G = \times_{i=1}^n K_{2n+1}$$
.

Then Proposition gives

$$\gamma(G)\gamma(G) - \gamma(G \times G) = (n+1)(n+1) - (2n+1) = n^2$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Di	irect product	Domination	of direct products	Idomatic p	partitions		our factors		Some pro	blems
	The con	cept								
				 C 11	1.1.1.1.1	\		~ .		

- An idomatic partition (a.k.a. fall coloring) of a graph G is a partition of V(G) into independent dominating sets.
- Closely related concept: b-coloring.
- Not every graph has an idomatic partition. Example: C_5 .

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems

The concept

- An idomatic partition (a.k.a. fall coloring) of a graph G is a partition of V(G) into independent dominating sets.
- Closely related concept: b-coloring.
- Not every graph has an idomatic partition. Example: C_5 .
- An idomatic *t*-partition is an idomatic partition into *t* parts.

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems

The concept

- An idomatic partition (a.k.a. fall coloring) of a graph G is a partition of V(G) into independent dominating sets.
- Closely related concept: b-coloring.
- Not every graph has an idomatic partition. Example: C_5 .
- An idomatic *t*-partition is an idomatic partition into *t* parts.
- The fall chromatic number [Dundar et al., 2000] of G, $\chi_f(G)$, is the minimum t (when it exists) such that G admits an idomatic t-partition.

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems

The concept

- An idomatic partition (a.k.a. fall coloring) of a graph G is a partition of V(G) into independent dominating sets.
- Closely related concept: b-coloring.
- Not every graph has an idomatic partition. Example: C_5 .
- An idomatic *t*-partition is an idomatic partition into *t* parts.
- The fall chromatic number [Dundar et al., 2000] of G, $\chi_f(G)$, is the minimum t (when it exists) such that G admits an idomatic t-partition.

 $V(K_n) = [n] = \{1, 2, \ldots, n\}.$

[Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar, Rall, 2000]

 $K_{n_1} \times K_{n_2}$ admits an idomatic *t*-partition if and only if $t \in \{n_1, n_2\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar, Rall, 2000]

 $K_{n_1} \times K_{n_2}$ admits an idomatic *t*-partition if and only if $t \in \{n_1, n_2\}$.

[Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar, Rall, 2000]

 $K_{n_1} \times K_{n_2}$ admits an idomatic *t*-partition if and only if $t \in \{n_1, n_2\}$.

Problem: Characterize idomatic partitions for three or more complete factors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Three factors [Valencia-Pabon, 2010]

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing two vertices with two equal coordinates. Then $I = pr_i^{-1}(k)$, where $i \in [3]$ and $k \in [n_i]$.

Three factors [Valencia-Pabon, 2010]

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing two vertices with two equal coordinates. Then $I = pr_i^{-1}(k)$, where $i \in [3]$ and $k \in [n_i]$.

- Type A sets: sets as in lemma.
- Type A partition: partition of V(G) into Type A sets.

Three factors [Valencia-Pabon, 2010]

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing two vertices with two equal coordinates. Then $I = pr_i^{-1}(k)$, where $i \in [3]$ and $k \in [n_i]$.

- Type A sets: sets as in lemma.
- Type A partition: partition of V(G) into Type A sets.

Theorem

 $K_{n_1} \times K_{n_2} \times K_{n_3}$ has an idomatic n_i -partition of Type A for each $i \in [3]$. Such partitions are the only idomatic partitions of Type A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

Three factors cont'd

Three factors cont'd

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing no two vertices with two equal coordinates. Then

 $I = \{(\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2)\}$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

Three factors cont'd

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing no two vertices with two equal coordinates. Then

 $I = \{(\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2)\}$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

• $I = \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}$

Three factors cont'd

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing no two vertices with two equal coordinates. Then

 $I = \{(\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2)\}$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

- $I = \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}$
- Type B sets: sets as in lemma.
- Type B partition: partition of V(G) into Type B sets.
Three factors cont'd

Lemma

I independent dominating set of $K_{n_1} \times K_{n_2} \times K_{n_3}$ containing no two vertices with two equal coordinates. Then

 $I = \{(\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2)\}$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

- $I = \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}$
- Type B sets: sets as in lemma.
- Type B partition: partition of V(G) into Type B sets.

Theorem

 $K_{n_1} \times K_{n_2} \times K_{n_3}$ has an idomatic partition of Type B if and only at least two of n_i 's are even.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Three factors cont'd

Type C partition: partition of V(G) with at least one type A part and at least one type B part.

Three factors cont'd

Type C partition: partition of V(G) with at least one type A part and at least one type B part.

Theorem

 $K_{n_1} \times K_{n_2} \times K_{n_3}$ has an idomatic $(q_1 + q_2)$ -partition of Type C if and only if there exists $i \in [3]$ such that $n_i - q_1 > 1$ and $K_{n_i-q_1} \times K_{n_j} \times K_{n_k}$ admits and an idomatic q_2 -partition of Type B. (Here $\{i, j, k\} = \{1, 2, 3\}$.)

Three factors cont'd

Type C partition: partition of V(G) with at least one type A part and at least one type B part.

Theorem

 $K_{n_1} \times K_{n_2} \times K_{n_3}$ has an idomatic $(q_1 + q_2)$ -partition of Type C if and only if there exists $i \in [3]$ such that $n_i - q_1 > 1$ and $K_{n_i-q_1} \times K_{n_j} \times K_{n_k}$ admits and an idomatic q_2 -partition of Type B. (Here $\{i, j, k\} = \{1, 2, 3\}$.)

 •••
 •••
 •••

 •••
 •••
 •••

 •••
 •••
 •••

• For
$$G = \times_{i=1}^{k} K_{n_{i}}$$
, $u = (u_{1}, \dots, u_{k})$, and $v = (v_{1}, \dots, v_{k})$, let
 $e(u, v) = |\{i \mid u_{i} = v_{i}\}|$.

(ロ)、(型)、(E)、(E)、 E) の(の)

• For
$$G = \times_{i=1}^{k} K_{n_i}$$
, $u = (u_1, \dots, u_k)$, and $v = (v_1, \dots, v_k)$, let
 $e(u, v) = |\{i \mid u_i = v_i\}|.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *u* and *v* are adjacent in *G* if and only if e(u, v) = 0.

Some notation

• For
$$G = \times_{i=1}^{k} K_{n_i}$$
, $u = (u_1, \dots, u_k)$, and $v = (v_1, \dots, v_k)$, let
 $e(u, v) = |\{i \mid u_i = v_i\}|.$

- u and v are adjacent in G if and only if e(u, v) = 0.
- $I \subseteq V(G)$ independent if and only if e(u, v) > 0, $u, v \in I$.

Some notation

• For
$$G = \times_{i=1}^{k} K_{n_i}$$
, $u = (u_1, \dots, u_k)$, and $v = (v_1, \dots, v_k)$, let
 $e(u, v) = |\{i \mid u_i = v_i\}|.$

- u and v are adjacent in G if and only if e(u, v) = 0.
- $I \subseteq V(G)$ independent if and only if e(u, v) > 0, $u, v \in I$.
- Let $X \subseteq V(G)$ be an independent set of $G = \times_{i=1}^k K_{n_i}$. Let

$$\{e(u, v) \mid u, v \in X, u \neq v\} = \{j_1, \ldots, j_r\}.$$

Then we say that X is a $T_{j_1,...,j_r}$ -set.

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems
Possibiliti	es			

Let $I \subseteq V(G)$, $G = \times_{i=1}^{t} K_{n_i}$, be an independent and dominating set of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − のへで

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems
Possibilitie	es			

Let $I \subseteq V(G)$, $G = \times_{i=1}^{t} K_{n_i}$, be an independent and dominating set of G.

Three factors $(t=2)$			
Then I can be a	(i) (ii) (iii)	T_1 -set, T_2 -set, $T_{1,2}$ -set.	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $I \subseteq V(G)$, $G = \times_{i=1}^{t} K_{n_i}$, be an independent and dominating set of G.

Three factors
$$(t = 2)$$

(i) T_1 -set,
Then I can be a (ii) T_2 -set,
(iii) $T_{1,2}$ -set.

Four factors (t = 3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

T_2 -sets and $T_{2,3}$ -set are not admissible

• Assume I is a T_2 -set or a $T_{2,3}$ -set.

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.
- WLOG (0,0,0,0) ∈ I. By vertex-transitivity and commutativity further WLOG (0,0,1,1) ∈ I.

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.
- WLOG (0,0,0,0) ∈ I. By vertex-transitivity and commutativity further WLOG (0,0,1,1) ∈ I.
- $e((0,0,1,1),(1,0,0,0)) = 1 \Rightarrow (1,0,0,0) \notin I.$

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.
- WLOG (0,0,0,0) ∈ I. By vertex-transitivity and commutativity further WLOG (0,0,1,1) ∈ I.
- $e((0,0,1,1),(1,0,0,0)) = 1 \Rightarrow (1,0,0,0) \notin I.$
- There exists $(a, b, c, d) \in I$ such that (a, b, c, d) dominates (1, 0, 0, 0).

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.
- WLOG (0,0,0,0) ∈ I. By vertex-transitivity and commutativity further WLOG (0,0,1,1) ∈ I.
- $e((0,0,1,1),(1,0,0,0)) = 1 \Rightarrow (1,0,0,0) \notin I.$
- There exists $(a, b, c, d) \in I$ such that (a, b, c, d) dominates (1, 0, 0, 0).
- In particular, $b, c, d \neq 0$.

- Assume I is a T_2 -set or a $T_{2,3}$ -set.
- Since I is dominating, |I| > 2.
- WLOG (0,0,0,0) ∈ I. By vertex-transitivity and commutativity further WLOG (0,0,1,1) ∈ I.
- $e((0,0,1,1),(1,0,0,0)) = 1 \Rightarrow (1,0,0,0) \notin I.$
- There exists $(a, b, c, d) \in I$ such that (a, b, c, d) dominates (1, 0, 0, 0).
- In particular, $b, c, d \neq 0$.
- But then e((a, b, c, d), (0, 0, 0, 0)) ≤ 1, a contradiction.

Let $G = K_2 \times K_2 \times K_2 \times K_4$. Then the sets

$I_1 = \{(0,0,0,0), (1,1,1,0), (0,1,1,1), (1,0,0,1), \}$ (1, 0, 1, 2), (0, 1, 0, 2), (1, 1, 0, 3), (0, 0, 1, 3)

$T_{1,2}$ -partitions

Let
$$G = K_2 \times K_2 \times K_2 \times K_4$$
. Then the sets

$$\begin{split} I_1 &= \{(0,0,0,0), (1,1,1,0), (0,1,1,1), (1,0,0,1), \\ &\quad (1,0,1,2), (0,1,0,2), (1,1,0,3), (0,0,1,3)\} \end{split}$$

and

$$\begin{split} I_2 &= \{(u_1+1 \bmod 2, u_2, u_3, u_4) \mid (u_1, u_2, u_3, u_4) \in I_1\}, \\ I_3 &= \{(u_1, u_2+1 \bmod 2, u_3, u_4) \mid (u_1, u_2, u_3, u_4) \in I_1\}, \\ I_4 &= \{(u_1, u_2, u_3+1 \bmod 2, u_4) \mid (u_1, u_2, u_3, u_4) \in I_1\}, \end{split}$$

form an idomatic partition of G.

• For
$$\mathcal{K}_{n_1} imes \mathcal{K}_{n_2} imes \mathcal{K}_{n_3} imes \mathcal{K}_{n_4}$$
, $I = [n_0] imes [n_1] imes [n_2] imes \{i\}$,

is a dominating $T_{1,2,3}$ -set.

• For
$$K_{n_1} \times K_{n_2} \times K_{n_3} \times K_{n_4}$$
,

$$I = [n_0] \times [n_1] \times [n_2] \times \{i\},$$

is a dominating $T_{1,2,3}$ -set.

• For $\times_{i=1}^{t} K_{n_i}$,

$$I_j = [n_1] \times \cdots \times [n_{\ell-1}] \times \{j\} \times [n_{\ell+1}] \times \cdots \times [n_t]$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

is a dominating $T_{1,2,\ldots,t-1}$ -set, where $j \in [n_{\ell}]$.

• For
$$K_{n_1} imes K_{n_2} imes K_{n_3} imes K_{n_4}$$
,

$$I = [n_0] \times [n_1] \times [n_2] \times \{i\},$$

is a dominating $T_{1,2,3}$ -set.

• For
$$\times_{i=1}^{t} K_{n_i}$$
,

$$I_j = [n_1] \times \cdots \times [n_{\ell-1}] \times \{j\} \times [n_{\ell+1}] \times \cdots \times [n_t]$$

is a dominating $T_{1,2,\ldots,t-1}$ -set, where $j \in [n_{\ell}]$.

Let n_ℓ = min{n_i | 1 ≤ i ≤ k}. Then (as Hedetniemi's conjecture holds for complete graphs) χ(G) = n_ℓ and therefore χ(G) = χ_f(G).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$T_{1,2,3}$ -partitions cont'd

For $K_2 \times K_2 \times K_2 \times K_2$,

$$\begin{split} H_1 &= \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), \\ &\quad (0,0,0,1), (1,1,0,0), (1,0,1,0), (1,0,0,1)\} \end{split}$$

and

$$\begin{split} l_2 &= \{(1,1,1,1), (0,1,1,1), (1,0,1,1), (1,1,0,1), \\ &\quad (1,1,1,0), (0,0,1,1), (0,1,0,1), (0,1,1,0)\} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

are both dominating $T_{1,2,3}$ -sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterization of T_1 -sets

Theorem

Let I be a T₁-set of $K_{n_1} \times K_{n_2} \times K_{n_3} \times K_{n_4}$. Then I is a dominating set if and only if $n_i \ge 3$ and

$$I = \{ (\alpha_0, \alpha_1, \alpha_2, \alpha_3), (\alpha_0, \beta_1, \beta_2, \beta_3), (\alpha_0, \gamma_1, \gamma_2, \gamma_3), \\ (\beta_0, \alpha_1, \beta_2, \gamma_3), (\beta_0, \gamma_1, \alpha_2, \beta_3), (\beta_0, \beta_1, \gamma_2, \alpha_3), \\ (\gamma_0, \alpha_1, \gamma_2, \beta_3), (\gamma_0, \beta_1, \alpha_2, \gamma_3), (\gamma_0, \gamma_1, \beta_2, \alpha_3) \},$$

where $\alpha_i, \beta_i, \gamma_i$ are pairwise different.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterization of T_1 -sets

Theorem

Let I be a T₁-set of $K_{n_1} \times K_{n_2} \times K_{n_3} \times K_{n_4}$. Then I is a dominating set if and only if $n_i \ge 3$ and

$$I = \{ (\alpha_0, \alpha_1, \alpha_2, \alpha_3), (\alpha_0, \beta_1, \beta_2, \beta_3), (\alpha_0, \gamma_1, \gamma_2, \gamma_3), \\ (\beta_0, \alpha_1, \beta_2, \gamma_3), (\beta_0, \gamma_1, \alpha_2, \beta_3), (\beta_0, \beta_1, \gamma_2, \alpha_3), \\ (\gamma_0, \alpha_1, \gamma_2, \beta_3), (\gamma_0, \beta_1, \alpha_2, \gamma_3), (\gamma_0, \gamma_1, \beta_2, \alpha_3) \},$$

where $\alpha_i, \beta_i, \gamma_i$ are pairwise different.

$$I = \{(0,0,0,0), (0,1,1,1), (0,2,2,2), \\(1,0,1,2), (1,2,0,1), (1,1,2,0), \\(2,0,2,1), (2,1,0,2), (2,2,1,0)\}.$$

Characterization of T_1 -partitions

Theorem

 $K_{n_1} \times K_{n_2} \times K_{n_3} \times K_{n_4}$ admits an idomatic partition into T_1 -sets if and only if $n_i \ge 3$ and there exist indices $j, k \in [4], j \ne k$, such that $3|n_j$ and $3|n_k$.

More than 4 factors

Theorem (Gravier, Mekiš, Mollard, 2010)

Let $G = \times_{i=1}^{t} K_{n_i}$ with $t \ge 3$ and $n_i \ge t - 1$ for all i and let $0, 1, a_2, ..., a_{t-2}$ be pairwise different (all) elements from $GF[p^k]$. If $t - 1 = p^k$ for some prime number p and some positive integer k, then the set

$$I = \mathcal{L}\{(0, 1, 1, \dots, 1), (1, 0, 1, a_2, \dots, a_{t-2})\},\$$

the two dimensional subspace of $\times_{i=1}^{t} GF[p^{k}]$, is a dominating T_{1} -set.

More than 4 factors

Theorem (Gravier, Mekiš, Mollard, 2010)

Let $G = \times_{i=1}^{t} K_{n_i}$ with $t \ge 3$ and $n_i \ge t - 1$ for all i and let $0, 1, a_2, ..., a_{t-2}$ be pairwise different (all) elements from $GF[p^k]$. If $t - 1 = p^k$ for some prime number p and some positive integer k, then the set

$$I = \mathcal{L}\{(0, 1, 1, \dots, 1), (1, 0, 1, a_2, \dots, a_{t-2})\},\$$

the two dimensional subspace of $\times_{i=1}^{t} GF[p^{k}]$, is a dominating T_{1} -set.

To be hopefully continued ...

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems
Proble	m			
Charac comple	terize $T_{1,2}$ -sets and $T_{1,3}$ -sets and $T_{1,3}$	_{2,3} -sets in direct	products of fou	ır

Dire	Domination of direct products	idomatic partitions	Tour factors	Some problems

Problem

Characterize $T_{1,2}$ -sets and $T_{1,2,3}$ -sets in direct products of four complete graphs.

Conjecture

Let I be a T_1 -set of $\times_{i=1}^t K_{n_i}$, where $t \ge 5$. Then $|I| = (t-1)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems

Problem

Characterize $T_{1,2}$ -sets and $T_{1,2,3}$ -sets in direct products of four complete graphs.

Conjecture

Let I be a T_1 -set of $\times_{i=1}^t K_{n_i}$, where $t \ge 5$. Then $|I| = (t-1)^2$.

Gravier, Moncel, Semri, Identifying codes of Cartesian product of two cliques of the same size, Electron. J. Combin. 15 (2008).

Problem

Identifying codes of the direct product of two (or more) complete graphs (of the same size).

Direct product	Domination of direct products	Idomatic partitions	Four factors	Some problems

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ