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Identifying codes

Definition (identifying code)

In a graph G , an identifying code C ⊆ V is a set of vertices that :

covers all vertices of G

separates all pairs of distinct vertices of G :
N[u] ∩ C 6= N[v ] ∩ C for all u 6= v

C = {a, d , g}
N[a] ∩ C = {a}
N[b] ∩ C = {a, g}
N[c] ∩ C = {d , g}
etc.
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Two variants

Definition (identification at distance r > 1)

C is an r -identifying code of G iff it is an identifying code of G r

(r -transitive closure)

Definition (identification of sets of at most t vertices)

C is an (r , t)-identifying code of G iff it is a code of G r that can
identify sets of at most t vertices, in the sense that the sets⋃

x∈X
N[x ] ∩ C

(for |X | ≤ t) are all nonempty and distinct
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Notations

About these codes :

identifying code ≡ ID code

r -identifying code ≡ r -ID code

(r , t)-identifying code ≡ (r , t)-ID code

(1, t)-identifying code ≡ t-set-ID code

Minimum cardinality of an ...

...identifying code in G : M(G )

...r -identifying code in G : Mr (G )

...(r , t)-identifying code in G : Mt
r (G )

...(1, t)-identifying code in G : Mt(G )
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A brief survey of the literature

Identifying codes were introduced in [Karpovsky et al (1998)], to
model a fault-detection problem in multiprocessor systems.
Since then, more than 200 papers on the topic, plus variants :

identification of sets of vertices, and at distance r > 1

identification using cycles, colors ; or using patterns in Z2

identification of edges

locating-dominating codes

discriminating codes

watching systems

etc.

Online bibliography on The fabulous pages of Antoine Lobstein :
www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf

www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
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Ph.D. thesis on identifying codes

Up to now, 7 Ph.D. thesis defended on the topic.

J. M. Identifying codes in graphs, (dir. S. Gravier), Grenoble –
France (in French, 2005)

Robert Skaggs Identifying vertices in graphs and digraphs,
(dir. M. Frick and G. Fricke), University of South Africa
(2007)

Sanna Ranto Identifying and locating-dominating codes in
binary Hamming spaces, (dir. I. Honkala), Turku – Finland
(2007)

Moshe Laifenfeld Coding for network applications: Robust
identification and distributed resource allocation, (dir.
A. Trachtenberg), Boston – USA (2008)
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Ph.D. thesis on identifying codes (cont.)

David Auger Combinatorial identification problems and graph
powers, (dir. O. Hudry), Paris – France (in French, 2010)

Brendon Stanton On vertex identifying codes for infinite
lattices, (dir. R. Martin), Iowa – USA (2011)

Ville Junnila On identifying and locating-dominating codes,
(dir. T. Laihonen), Turku – Finland (2011)

... and still some thesis in progress :

Marwane Bouznif, Grenoble – France

Florent Foucaud, Bordeaux – France

Aline Parreau, Grenoble – France

Mikko Pelto, Turku – Finland

(others ?)
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Applications of these codes

I Faut-detection in multiprocessor systems
[Karpovsky et al (1998)]

I Monitoring of buildings using wireless sensors
[Ray et al (2004), Ungrangsi et al (2004)]
I RNA secondary structure analysis [Haynes et al (2006)]
I Process monitoring in industrial engineering
[Galasso & Moncel]
I ...
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Applications of these codes

I Faut-detection in multiprocessor systems
[Karpovsky et al (1998)]
I Monitoring of buildings using wireless sensors
[Ray et al (2004), Ungrangsi et al (2004)]
I RNA secondary structure analysis [Haynes et al (2006)]

Bioinformatics community: RAG model (“RNA As Graphs”)
[Schlick et al (2004)]
Non-surjective mapping

Φ : {existing RNA structures} → {trees}
What are the structural properties of trees belonging to
Im(Φ) ?
Classification heuristics using domination and variants
(including ID codes) [Haynes et al (2006)]

I Process monitoring in industrial engineering
[Galasso & Moncel]
I ...
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Applications of these codes

I Faut-detection in multiprocessor systems
[Karpovsky et al (1998)]
I Monitoring of buildings using wireless sensors
[Ray et al (2004), Ungrangsi et al (2004)]
I RNA secondary structure analysis [Haynes et al (2006)]
I Process monitoring in industrial engineering
[Galasso & Moncel]

Framework: ISO 9000 standards (certification)

Business processes seen as a graph (causality links)

Efficient monitoring of the network of process (aggregation of
indicators)

Work in progress...

I ...



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Applications of these codes

I Faut-detection in multiprocessor systems
[Karpovsky et al (1998)]
I Monitoring of buildings using wireless sensors
[Ray et al (2004), Ungrangsi et al (2004)]
I RNA secondary structure analysis [Haynes et al (2006)]
I Process monitoring in industrial engineering
[Galasso & Moncel]
I ...



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

And now...

1 Introduction

2 Efficient structures

3 Superimposed codes

4 Constructions of efficient graphs using superimposed codes

5 Conclusion

6 Bibliography



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

General results

Theorem ([Charon et al (2003)])

Given a graph G admitting a code, computing M(G ) is NP-hard.
This remains true even if G is assumed to be bipartite.

Theorem ([Charon et al (2005), Charon et al (2007)])

For every r ≥ 1, and for every connected graph G on n ≥ 3
vertices admitting an r-ID code, we have

dlog2(n + 1)e ≤ Mr (G ) ≤ n − 1.

In addition, for every c ∈ [dlog2(n + 1)e, n − 1], there exists a
connected graph on n vertices such Gc that

Mr (Gc) = c .
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Ideas of proof

I Logarithmic bound [Karpovsky et al (1998)]

I n − 1 bound [Bertrand (2001), Gravier & Moncel (2007)]
I Attaining these bounds [Charon et al (2007)]
I In-between values [Charon et al (2005)]

use of trees for [d3(n+1)
7 e, n − 1]

bipartite graphs for [dlog2(n + 1)e, n2 ]
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I Logarithmic bound [Karpovsky et al (1998)]
I n − 1 bound [Bertrand (2001), Gravier & Moncel (2007)]
I Attaining these bounds [Charon et al (2007)]
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I In-between values [Charon et al (2005)]

use of trees for [d3(n+1)
7 e, n − 1]

bipartite graphs for [dlog2(n + 1)e, n2 ]



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Ideas of proof

I Logarithmic bound [Karpovsky et al (1998)]
I n − 1 bound [Bertrand (2001), Gravier & Moncel (2007)]
I Attaining these bounds [Charon et al (2007)]
I In-between values [Charon et al (2005)]

use of trees for [d3(n+1)
7 e, n − 1]

bipartite graphs for [dlog2(n + 1)e, n2 ]



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Ideas of proof

I Logarithmic bound [Karpovsky et al (1998)]
I n − 1 bound [Bertrand (2001), Gravier & Moncel (2007)]
I Attaining these bounds [Charon et al (2007)]
I In-between values [Charon et al (2005)]

use of trees for [d3(n+1)
7 e, n − 1]

bipartite graphs for [dlog2(n + 1)e, n2 ]



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Ideas of proof

I Logarithmic bound [Karpovsky et al (1998)]
I n − 1 bound [Bertrand (2001), Gravier & Moncel (2007)]
I Attaining these bounds [Charon et al (2007)]
I In-between values [Charon et al (2005)]

use of trees for [d3(n+1)
7 e, n − 1]

bipartite graphs for [dlog2(n + 1)e, n2 ]



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Related question

I Finding all the extremal graphs

dlog2(n + 1)e bound (plus minimization of number of edges):
[Moncel (2006), Raspaud & Tong]

n − 1 bound: [Foucaud et al (2011)]

I Infinite graphs

classification of infinite graphs admitting only V as an ID
code: [Foucaud et al (2011)]

I Identification at distance r : (r -th) root of a graph

implicit in the above-mentioned papers

David Auger’s thesis

papers [Auger et al, Auger et al (2011)]
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Quite a big gap

The gap between dlog2(n + 1)e and n − 1 is exponential.

Question

What if we had the choice of a network to perform vertex
identification ?

Answer

We would surely choose a graph G on n vertices for which
M(G ) = O(log n).

Definition (Efficient structure)

An efficient structure to perform vertex identification is a graph G
such that M(G ) is close to O(log n), where n is the number of
vertices of G .
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Survey of known results

I ID codes

we know (more than) everything thanks to
[Moncel (2006), Raspaud & Tong]

I r -ID codes

we know many efficient graphs thanks to [Charon et al (2007)]

I t-set-ID codes

we do not know so many things...
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Identification of sets of vertices

Harder than identification of vertices!!

Min (r , t)-ID code

Input: a graph G , an integer k

Output: does G admit an (r , t)-ID code of cardinality ≤ k ?

Complexity unknown!

Theorem ([Auger et al (2010)])

Min (r , 2)-ID code is NP-complete, even when restricted to
planar graphs of maximum degree ≤ 3
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Bounds

We still get a log bound :

Proposition ([Karpovsky et al (1998)])

Let C be a t-set-ID code in a graph on n vertices. Then

2|C | ≥
t∑

i=0

(
n

i

)

This implies that |C | ≥ Ω(t log n), but this can be improved...
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Definition

Definition (Superimposed code [Kautz & Singleton (1964)])

Let t ≥ 1 and k ≥ 1. A t-superimposed code of dimension k is a
family F ⊆ 2[k] such that ⋃

A∈A
A 6=

⋃
B∈B

B

for any A,B ⊆ F , A 6= B, |A| ≤ t, |B| ≤ t.

(also called union-free family)

In other words, the union
⋃

A∈A A identifies the set A

Given t and k , the aim is to find F of maximum cardinality
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Applications of superimposed codes

I CDMA : code division multiple access channel

at most t users on a given communication channel

each of them is identified by a code A ∈ 2[k]

it is enough to know ∪A to know exactly who is using the
channel

I Group testing [Du & Hwang (1993)]

at most t positive (e.g. blood) samples among a large set of
samples

possibility to pool the tests

a pooled test is positive iff there is at least one positive
sample in the pool

group testing is used for instance in genomics
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Connection with ID codes

Quote from [Karpovsky et al (1998)]

“Near-optimal constructions [of the graph] for sets of
vertices can be obtained using superimposed codes.”

Intuitively: YES, but formally??

What is clear :

Proposition

Let C be a t-set-ID code of a graph G on n vertices. Then the
family {N[v ] ∩ C | v ∈ V (G )} is a t-superimposed code of
dimension |C |.

⇒ superimposed codes can be obtained using identifying codes
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Bounds on t-set-ID codes

Theorem
([D’yachkov & Rykov (1983), Füredi (1996), Ruszinkó (1994)])

There exists two constants c1 > 0 and c2 > 0 such that for any
optimal t-superimposed code F∗ of dimension k we have

c1
k

t2
≤ log2 |F∗| ≤ c2

k log t

t2

Corollary

There exists a constant c2 such that any t-set-ID code C in a
graph on n vertices satisfies

|C | ≥ c2
t2

log t
log n

Improves the O(t log n) bound of [Karpovsky et al (1998)]
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Reverse connection

How to get t-set-ID codes from t-superimposed codes ?

Harder !!
Main problem :

no structure in superimposed codes (sets)

heavy structure in ID codes (graph)



Introduction Efficient structures Superimposed codes Constructions Conclusion Bibliography

Example – a 2-superimposed code of dimension 6

v1 0 1 0 1 0 0
v2 1 0 1 0 0 0
v3 0 0 0 1 0 1
v4 0 1 0 0 1 0
v5 1 0 0 0 0 1
v6 1 0 0 0 1 0

c1

1 a b

c2

a 1 ...

c3

b 1

c4

... 1

c5

1

c6

1

c1 c2 c3 c4 c5 c6

Looking for a specific structure into the matrix so that it becomes
the C − V -incidence matrix of a graph equipped with an ID code
C !

permutations of rows and columns to get this structure

not always possible to do it
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Oriented case

Theorem ([Frieze et al (2007)])

Let F be a maximal superimposed code of dimension n. Then it is
possible to find a set of permutations of rows and columns of the
0− 1-matrix associated to F such that it can be seen as a
C − V -incidence matrix of an oriented graph equipped with an ID
code C such that |C | = |F|.

In other words, we can get the 1-diagonal, but not the symmetry.

We do not have any result of this type for the non-oriented case.
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A Lemma using projective planes

Still, we get something:

Lemma ([Gravier & Moncel (2005)])

Let q be a prime power, and let A be the incidence matrix of a
projective plane of dimension q. Then the graph having

B =

(
0 A

AT 0

)
as adjacency matrix is a connected graph on 2(q2 + q + 1)
vertices, admitting a q-set-ID code.
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Use of previous Lemma (from [Gravier & Moncel (2005)])

Hi = copy of the graph of the Lemma

Since the Hi ’s are “small”, then we do not lose too much:

|C | = O(t4 log n)
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Random construction

Theorem ([Frieze et al (2007)])

Let t ≥ 2. There exists an infinite family of graphs (Gi )i∈N such
that

Mt(Gi ) = O(t2 log ni ) ∀i ∈ N

where ni is the number of vertices of Gi for all i .

Non-constructive result, better than [Gravier & Moncel (2005)],
based on probabilistic arguments:

drop edges with a suitable probability p

estimate the probability that a given subset of vertices C is a
code

tune p so that this probability is positive for a C of small size
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Another construction (from [Moncel (2006)])

Greedy algorithm (sort of “derandomization” of the random
construction of [Frieze et al (2007)], inspired from the greedy
algorithm of [Hwang & Sós (1987)]):

1 set GN a graph on N vertices v1, . . . , vN obtained with the
projective plane Lemma

2 set I (i) = {j | vj ∈ N(vi )} for all i

3 set F as {A | A ⊆ 2[N], |A| =
⌈
N
3t

⌉
}

4 set F = F r
⋃

i{A | |A ∩ I (i)| > 1
t |I (i)|}

5 while F 6= ∅ do

pick A0 ∈ F
add a new vertex vA0 to GN , such that N(vA0 ) = {vi | i ∈ A0}
set F = F r {B | |B ∩ A0| ≥ 1

t |A0|}
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Main arguments

Why this algorithm works (general ideas):

elements of F are of size N
3t , hence F is large

elements of F do not intersect the I (i)’s too much, which
helps for separation property

elements added to GN do not intersect themselves too much,
which helps for separation property

parameters are tuned such that we do not throw out too
many elements of F

And there are useful notions behind this...
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Cover-free families

Useful notion:

Definition (Cover-free family [Kautz & Singleton (1964)])

Let t ≥ 1 and k ≥ 1. A t-cover-free family of dimension k is a
family F ⊆ 2[k] such that

A 6⊆
⋃
B∈B

B

for any A ∈ F ,B ⊆ F , A 6∈ B, |B| ≤ t.

Proposition

F is t-cover-free ⇒ F is a t-superimposed code ⇒ F is
(t − 1)-cover-free
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Part-intersecting families

Another useful notion:

Definition (Part-intersecting family [Kautz & Singleton (1964)])

Let t ≥ 1 and k ≥ 1. A < t-part-intersecting family of dimension
k is a family F ⊆ 2[k] such that

|A ∩ B| < 1

t
min(|A|, |B|)

for any A,B ∈ F ,A 6= B.

Proposition

F is < t-part-intersecting ⇒ F is t-cover-free ⇒ F is a
t-superimposed code
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Summary

Overview of discussed results:

Graphs for which M(G ) = O(log n) are of specific interest, in
particular with respect to applications

We know all of them for ID codes

We know some of them for r -ID codes

As for t-set-ID codes:

we do not even know the tight lower bound!

we have a lower bound of Ω( t2

log t log n)

we have random and explicit constructions for O(t2 log n)
we do not know what happens in between
everything happens as for the case of superimposed codes
although we do not have an explicit correspondence between
t-set-ID codes and superimposed codes
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Perspectives

Related problems:

upper bound for t-set-ID codes ?

characterization of all extremal graphs (analog to
[Foucaud et al (2011)]) ?

better lower bounds (for ID codes) and upper bounds (for
superimposed codes) ?

establish a formal link between ID codes and superimposed
codes ?
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