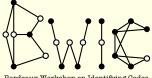
Locally identifying colorings of graphs

Aline Parreau

Joint work with:

Louis Esperet, Sylvain Gravier, Mickaël Montassier, Pascal Ochem

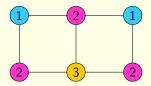
and: Florent Foucaud, Iiro Honkala, Tero Laihonen, Guillem Perarnau



Bordeaux Workshop on Identifying Codes November 21-25, 2011

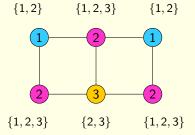
Identifying coloring of a graph G:

- $c: V \to \mathbb{N}$
- $c(N[x]) \neq c(N[y])$ for any vertices $x \neq y$
- $\chi_{id}(G)$: minimum number of colors needed to identify G



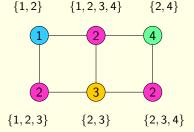
Identifying coloring of a graph G:

- $c: V \to \mathbb{N}$
- $c(N[x]) \neq c(N[y])$ for any vertices $x \neq y$
- $\chi_{id}(G)$: minimum number of colors needed to identify G



Identifying coloring of a graph G:

- $c: V \to \mathbb{N}$
- $c(N[x]) \neq c(N[y])$ for any vertices $x \neq y$
- $\chi_{id}(G)$: minimum number of colors needed to identify G

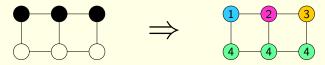


Identifying coloring of a graph G:

- $c: V \to \mathbb{N}$
- $c(N[x]) \neq c(N[y])$ for any vertices $x \neq y$
- $\chi_{id}(G)$: minimum number of colors needed to identify G

Few remarks:

- only exists for twin-free graphs (like id-codes)
- $\chi_{id}(G) \leq \gamma^{ID}(G) + 1$



Global to local colorings

Identifying coloring of a graph G = (V, E):

- $c: V \to \mathbb{N};$
- For any $x \neq y$ in V, $c(N[x]) \neq c(N[y])$;
- $\chi_{id}(G)$: minimum number of colors needed to identify G;

Locally identifying coloring (lid-coloring) of a graph G = (V, E):

- $c: V \to \mathbb{N}, c(x) \neq c(y)$ for $xy \in E$;
- For any $xy \in E$, $c(N[x]) \neq c(N[y])$, if possible;
- $\chi_{lid}(G)$: min. number of colors needed to locally identify G.

Global to local colorings

Identifying coloring of a graph G = (V, E):

- $c: V \to \mathbb{N};$
- For any $x \neq y$ in V, $c(N[x]) \neq c(N[y])$;
- $\chi_{id}(G)$: minimum number of colors needed to identify G;

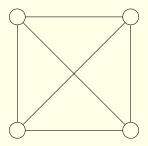
Locally identifying coloring (lid-coloring) of a graph G = (V, E):

- $c: V \to \mathbb{N}, c(x) \neq c(y)$ for $xy \in E$;
- For any $xy \in E$, $c(N[x]) \neq c(N[y])$, if possible;
- $\chi_{lid}(G)$: min. number of colors needed to locally identify G.

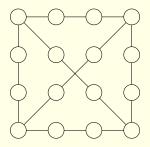
Why?

- Always exists.
- Refinment of classic colorings: $\chi(G) \leq \chi_{lid}(G)$

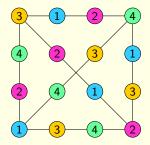
Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

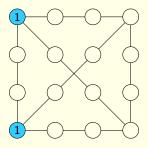


Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



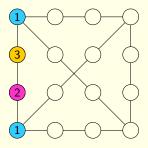
 $\chi_{lid}(G) \leq 4$

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



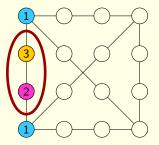
 $\chi_{lid}(G) \stackrel{?}{=} 4$

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



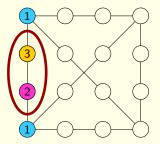
$$\chi_{lid}(G) \stackrel{?}{=} 4$$

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



$$\chi_{lid}(G) = 4$$
 but $\chi(G) = 3$

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$



$$\chi_{lid}(G) = 4$$
 but $\chi(G) = 3$

For each k, there exists graph G_k s.t $\chi(G_k) = 3$ and $\chi_{lid}(G_k) = k$

No upper bound with χ !

Upper bound on a graph with *n* vertices ?

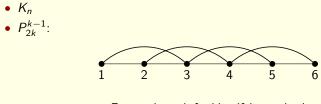
Classic colorings: $\chi(G) = n \Leftrightarrow G = K_n$

Lid-colorings: for which graphs $\chi_{lid}(G) = n$?

Upper bound on a graph with *n* vertices ?

Classic colorings: $\chi(G) = n \Leftrightarrow G = K_n$

Lid-colorings: for which graphs $\chi_{lid}(G) = n$?

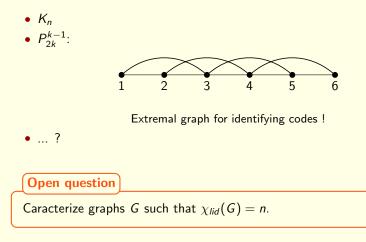


Extremal graph for identifying codes !

Upper bound on a graph with *n* vertices ?

Classic colorings: $\chi(G) = n \Leftrightarrow G = K_n$

Lid-colorings: for which graphs $\chi_{lid}(G) = n$?

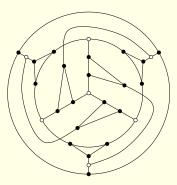


Maximum degree

Classic colorings: $\chi(G) \leq \Delta + 1$, tight

Lid-colorings:

- $\chi_{\textit{lid}}(\mathcal{G}) \leq \chi(\mathcal{G}^3) \leq \Delta^3 \Delta^2 + \Delta + 1$
- Graphs with $\chi_{\mathit{lid}}({\mathcal{G}}) \geq \Delta^2 \Delta + 1$

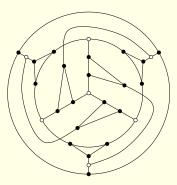


Maximum degree

Classic colorings: $\chi(G) \leq \Delta + 1$, tight

Lid-colorings:

- $\chi_{\textit{lid}}(\mathcal{G}) \leq \chi(\mathcal{G}^3) \leq \Delta^3 \Delta^2 + \Delta + 1$
- Graphs with $\chi_{\mathit{lid}}({\mathcal{G}}) \geq \Delta^2 \Delta + 1$



Maximum degree

Classic colorings: $\chi(G) \leq \Delta + 1$, tight

Lid-colorings:

- $\chi_{\textit{lid}}(\mathcal{G}) \leq \chi(\mathcal{G}^3) \leq \Delta^3 \Delta^2 + \Delta + 1$
- Graphs with $\chi_{\textit{lid}}({\sf G}) \geq \Delta^2 \Delta + 1$

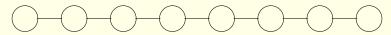
Theorem (Foucaud, Honkala, Laihonen, P., Perarnau, 2011⁺)

For any graph G with $\Delta \geq 3$: $\chi_{lid}(G) \leq 2\Delta^2 - 3\Delta + 3$

Open question

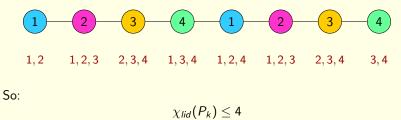
Do we always have $\chi_{\textit{lid}}(G) \leq \Delta^2 + O(\Delta)$?

With 4 colors :

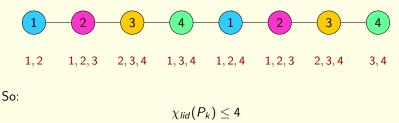


With 4 colors :

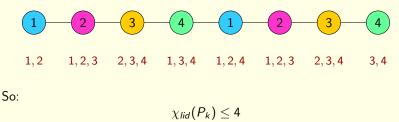
With 4 colors :

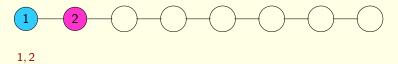


With 4 colors :

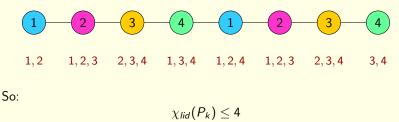


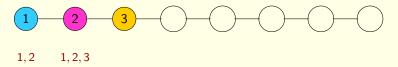
With 4 colors :



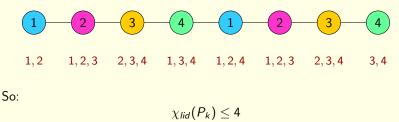


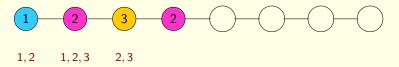
With 4 colors :



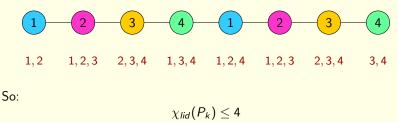


With 4 colors :

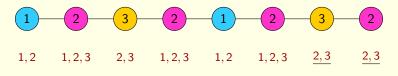




With 4 colors :

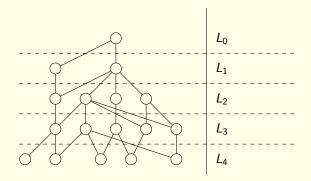


Is it possible with 3 colors ?

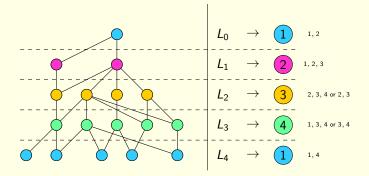


 $\chi_{lid}(P_k) = 3 \Leftrightarrow k \text{ is odd } \dots \chi_{lid} \text{ is not heriditary } !$

Bipartite graphs

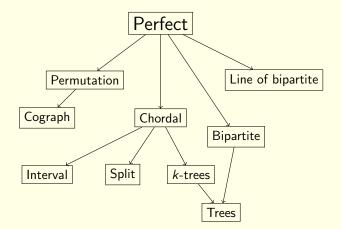


Bipartite graphs

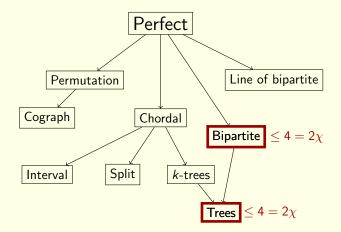


- $3 \le \chi_{lid}(B) \le 4$
- To decide between 3 and 4 is NP-complete (reduction from 2-coloring of hypergraph)
- Polynomial for trees, grids and hypercubes ($\chi_{lid} = 3$), regular bipartite graphs...

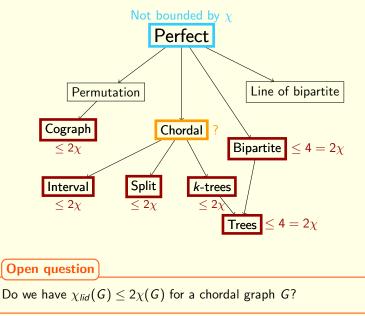
Perfect Graphs



Perfect Graphs

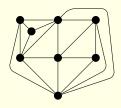


Perfect Graphs



Planar graphs:

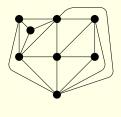
- Worse example : 8 colors,
- Really large (1000 ?) bound by Gonzcales and Pinlou



 P_{8}^{3}

Planar graphs:

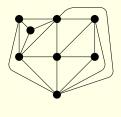
- Worse example : 8 colors,
- Really large (1000 ?) bound by Gonzcales and Pinlou
- With large girth (36) bounded by 5



 P_{8}^{3}

Planar graphs:

- Worse example : 8 colors,
- Really large (1000 ?) bound by Gonzcales and Pinlou
- With large girth (36) bounded by 5



 P_{8}^{3}

Planar graphs:

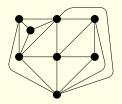
- Worse example : 8 colors,
- Really large (1000 ?) bound by Gonzcales and Pinlou
- With large girth (36) bounded by 5

Outerplanar graphs:

- General bound: 20 colors,
- Max outerplanar graphs: \leq 6 colors,
- Without triangles: \leq 8 colors,
- Examples with at most 6 colors

Open question

Do we have $\chi_{lid}(G) \leq 8$ for planar graphs and $\chi_{lid}(G) \leq 6$ for outer-planar graphs ?



 P_{8}^{3}

 P_{6}^{2}

A remark

- For some subclasses of perfect graphs : $\chi_{\mathit{lid}}(\mathsf{G}) \leq 2\omega(\mathsf{G}) = 2\chi(\mathsf{G})$
- For planar graphs, worse example : $\chi_{lid}(G) \le 8 = 2\chi(G)$
- For outerplanar graphs, worse example : $\chi_{\textit{lid}}(G) \leq 6 = 2\chi(G)$
- ...

Open question

For which graphs do we have $\chi_{lid}(G) \leq 2\chi(G)$?

Another remark

•
$$\chi_{lid}(G) = 2 \Leftrightarrow G = K_2$$

•
$$\chi_{lid}(G) = 3 \Rightarrow G = K_3$$
 or G is bipartite

• $\chi_{lid}(G) = 3$ and $\chi(G) = 3 \Leftrightarrow G = K_3$

Open question

Caracterize graphs G such that $\chi_{lid}(G) = \chi(G)$. Are they only the complete graphs ?

Conclusion

Lot of open questions:

- Graphs with $\chi_{lid} = n$?
- Graphs with $\chi_{lid} = \chi$?
- Do we have χ_{lid}(G) ≤ Δ² + O(Δ) ?
- Do we have χ_{lid}(G) ≤ 2χ(G) for chordal graphs? for planar graphs? for which graphs?
- Find a good bound for planar graphs.
- Find a "nice" application of lid-colorings

Thanks !