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Identification with colors ?

Identifying coloring of a graph G:
ec:V—-N
o c(N[x]) # c(N[y]) for any vertices x # y
e Yid(G): minimum number of colors needed to identify G
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Identification with colors ?

Identifying coloring of a graph G:
ec:V—-N
o c(N[x]) # c(N[y]) for any vertices x # y
e Yid(G): minimum number of colors needed to identify G

{1,2} {1,2,3,4} {2,4}

1 4
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2/13



Identification with colors ?

Identifying coloring of a graph G:
ec:V—N
e c(N[x]) # c(N[y]) for any vertices x # y
e Yid(G): minimum number of colors needed to identify G

Few remarks:

e only exists for twin-free graphs (like id-codes)

* xiw(G) <~P(G) +1
@ 3
= [l
OamO=n0)

2/13



Global to local colorings

Identifying coloring of a graph G = (V, E):
e c:V—-N;

e Forany x # y in V, c¢(N[x]) # c(N[y]);
e xid(G): minimum number of colors needed to identify G;

Locally identifying coloring (lid-coloring) of a graph G = (V, E):
o c: V=N, c(x)# c(y) for xy € E;
e For any xy € E, c(N[x]) # c(N[y]), if possible;

e Yiig(G): min. number of colors needed to locally identify G.
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Global to local colorings

Identifying coloring of a graph G = (V, E):
e c:V—-N;

e Forany x # y in V, c¢(N[x]) # c(N[y]);
e xid(G): minimum number of colors needed to identify G;

Locally identifying coloring (lid-coloring) of a graph G = (V, E):
o c: V=N, c(x)# c(y) for xy € E;
e For any xy € E, c(N[x]) # c(N[y]), if possible;

e Yiig(G): min. number of colors needed to locally identify G.

Why?
o Always exists.

o Refinment of classic colorings: x(G) < xiis(G)
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An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

Q

O

4/13



An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

4/13



An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

4/13



An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

,
Xid(G) =4

4/13



An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

,
Xid(G) =4

4/13



An example
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An example

Def: Vxy € E, c(x) # c(y) and c(N[x]) # c(N[y])

xid(G) = 4 but x(G) =3
For each k, there exists graph Gi s.t x(Gk) = 3 and xiid(Gk) = k

No upper bound with x !
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Upper bound on a graph with n vertices ?
Classic colorings: x(G) =n< G = K,

Lid-colorings: for which graphs x4(G) = n?
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Upper bound on a graph with n vertices ?
Classic colorings: x(G) =n< G = K,

Lid-colorings: for which graphs x4(G) = n?

e K,

k—1,
o P

Extremal graph for identifying codes !
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Upper bound on a graph with n vertices ?
Classic colorings: x(G) =n< G = K,

Lid-colorings: for which graphs xis(G) = n?

e K,
Pyt
1 2 3 4 5 6
Extremal graph for identifying codes !
o .7

Open question

Caracterize graphs G such that x;4(G) = n. ]
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Maximum degree
Classic colorings: x(G) < A +1, tight

Lid-colorings:
o xid(G) < x(G}) <A} -A?+A+1
e Graphs with ;g(G) > A? — A +1
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Maximum degree

Classic colorings: x(G) < A + 1, tight

Lid-colorings:
e Xid(G) S x(G}) < AS—A2+A+1
e Graphs with x;is(G) > A2 — A +1

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2011*)]

For any graph G with A > 3: yg(G) < 2A2 —3A + 3

Open question

Do we always have xis(G) < A%+ O(A) ?
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Bipartite graphs: the paths
With 4 colors :

O~ O—O0-0-0-0-0-0
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Bipartite graphs: the paths
With 4 colors :

0 060060

1,2 1,23 23,4 1,34 1,24 1,23 23,4 3,4

So:
Xid(Px) < 4
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Bipartite graphs: the paths
With 4 colors :

0 066006006

1,2 1,23 23,4 1,34 1,24 1,23 23,4 3,4

So:
Xid(Px) < 4

Is it possible with 3 colors 7
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Bipartite graphs: the paths
With 4 colors :

0 060060

1,2 1,23 23,4 1,34 1,24 1,23 23,4 3,4

So:
Xid(Px) < 4

Is it possible with 3 colors 7

e nOny @

1,2 1,23 2.3
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Bipartite graphs: the paths
With 4 colors :

@0 66 © 00 6
NN N
1,2 1,2,3 2,34 1,34 1,24 123 23,4

So:
Xid(Px) < 4

Is it possible with 3 colors 7

3,4

0 0 0 006

1,2 1,2,3 2,3 1,23 1,2 1,23 23

Xiid(Px) =3 < kis odd ... xjig is not heriditary !
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Bipartite graphs




Bipartite graphs

e 3<xiq(B)<4

e To decide between 3 and 4 is NP-complete (reduction from
2-coloring of hypergraph)

e Polynomial for trees, grids and hypercubes (/s = 3), regular
bipartite graphs...
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Perfect Graphs

Perfect

Cograph

’ Line of bipartite

Chordal |

Bipartite
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Perfect Graphs

Perfect

ograh

’ Line of bipartite

C

Chordal |

Bipartite| < 4 = 2y
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Perfect Graphs

Perfect

| Line of bipartite

Chordal

<2x

Bipoe] < 4 - 21

| Interval | [Split]  [k-trees]
<2x <2x <2

Open question

Do we have xig(G) < 2x(G) for a chordal graph G?
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Planar Graphs

Planar graphs:
o Worse example : 8 colors,

o Really large (1000 ?) bound by
Gonzcales and Pinlou
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Planar Graphs

Planar graphs:
o Worse example : 8 colors,

o Really large (1000 ?) bound by
Gonzcales and Pinlou

o With large girth (36) bounded by 5

P
Outerplanar graphs:
General bound: 20 colors, m
e Max outerplanar graphs: < 6 colors,

Without triangles: < 8 colors,

Examples with at most 6 colors

Open question

Do we have xig(G) < 8 for planar graphs and xi4(G) < 6 for outer-
planar graphs ?
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A remark

o For some subclasses of perfect graphs : xit(G) < 2w(G) = 2x(G)
e For planar graphs, worse example : xig(G) < 8 = 2x(G)
e For outerplanar graphs, worse example : yis(G) < 6 = 2x(G)

Open question

For which graphs do we have xi4s(G) < 2x(G) ? ]
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Another remark

e xi(G) =2 G =K,
e id(G) =3 = G = Kj; or G is bipartite
e Xid(G) =3 and x(G) =3 = G =K

Open question

Caracterize graphs G such that x;is(G) = x(G). Are they only the
complete graphs 7
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Conclusion

Lot of open questions:
e Graphs with g =n?
e Graphs with xjig = x ?
e Do we have xis(G) < A%+ 0(A) ?

e Do we have x;i4(G) < 2x(G) for chordal graphs? for planar graphs?
for which graphs?

e Find a good bound for planar graphs.

e Find a "nice” application of lid-colorings

Thanks |
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